
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor: 18. Informatika

Implementace mikroservisńı
architektury a dynamického

pluginového ekosystému pro robustńı
sociálńı platformu s využit́ım

orchestrace Kubernetes

Patrik Stohanzl

Pardubice 2025

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

IMPLEMENTACE MIKROSERVISNÍ
ARCHITEKTURY A DYNAMICKÉHO
PLUGINOVÉHO EKOSYSTÉMU PRO
ROBUSTNÍ SOCIÁLNÍ PLATFORMU S

VYUŽITÍM ORCHESTRACE
KUBERNETES

IMPLEMENTING MICROSERVICE

ARCHITECTURE AND DYNAMIC PLUGIN

ECOSYSTEM FOR A ROBUST SOCIAL

PLATFORM USING KUBERNETES

ORCHESTRATION

AUTOR Patrik Stohanzl

ŠKOLA DELTA - Středńı škola informatiky
a ekonomie

KRAJ Pardubický

ŠKOLITEL RNDr. Jan Koupil, PhD.

OBOR 18. Informatika

Pardubice 2025

Prohlášeńı

Prohlašuji, že svou práci na téma Implementace mikroservisńı architektury

a dynamického pluginového ekosystému pro robustńı sociálńı platformu s

využit́ım orchestrace Kubernetes jsem vypracoval/a samostatně pod vedeńım

RNDr. Jana Koupila, PhD. a s použit́ım odborné literatury a daľśıch in-

formačńıch zdroj̊u, které jsou všechny citovány v práci a uvedeny v seznamu

literatury na konci práce.

Dále prohlašuji, že tǐstěná i elektronická verze práce SOČ jsou shodné

a nemám závažný d̊uvod proti zpř́ıstupňováńı této práce v souladu se zákonem

č. 121/2000 Sb., o právu autorském, o právech souvisej́ıćıch s právem au-

torským a změně některých zákon̊u (autorský zákon) v platném změńı.

V Pardubićıch dne:

Patrik Stohanzl

Poděkováńı

Děkuji svému vedoućımu RNDr. Janu Koupilovi, PhD. za obětavou pomoc,

podnětné připomı́nky a nekonečnou trpělivost, kterou mi během práce po-

skytoval.

Abstrakt

Tato práce se zabývá návrhem a implementaćı moderńı sociálńı platformy So-

cigy, která řeš́ı identifikované nedostatky současných sociálńıch śıt́ı prostřednictv́ım

inovativńıho př́ıstupu k architektuře, bezpečnosti a rozšǐritelnosti. Práce ana-

lyzuje současný stav sociálńıch platforem a identifikuje jejich hlavńı nedo-

statky, zejména v oblasti uživatelské kontroly, transparentnosti algoritmů a

bezpečnosti.

Na základě této analýzy je navržena robustńı mikroservisńı architektura

využ́ıvaj́ıćı Kubernetes pro orchestraci, HashiCorp Consul pro Service Mesh

a PostgreSQL s Patroni pro zajǐstěńı vysoké dostupnosti dat. Kĺıčovým inova-

tivńım prvkem je implementace dynamického pluginového systému založeného

na WebAssembly, který umožňuje bezpečné spouštěńı kódu třet́ıch stran v

sandboxovaném prostřed́ı.

Práce detailně popisuje implementaci jednotlivých komponent systému,

včetně autentizačńıch mechanismů využ́ıvaj́ıćıch standard FIDO2 (Passkeys),

mikroservisńıho ekosystému a klientských aplikaćı pro mobilńı a webové plat-

formy. Zvláštńı pozornost je věnována vývoji vlastńıho Rust frameworku

pro tvorbu plugin̊u s podporou JSX-podobné syntaxe, který výrazně zjed-

nodušuje vývoj rozš́ı̌reńı.

Výsledky benchmarkingu ukazuj́ı vynikaj́ıćı výkon Rust implementace

pluginového systému, která dosahuje až 200 000 fps při zpracováńı virtuálńıho

DOM. Práce také identifikuje omezeńı současné implementace a navrhuje

směry budoućıho vývoje, včetně plné integrace plugin̊u do hlavńı aplikace,

implementace multi-cluster řešeńı a pokročilých algoritmů pro personalizaci

5

obsahu.

6

Obsah

1 Úvod 10

1.1 Analýza potřeby nové sociálńı platformy 10

1.1.1 Současný stav sociálńıch platforem 10

1.1.2 Problematika obchodně orientovaného př́ıstupu 11

1.1.3 Technologické nedostatky současných řešeńı 12

1.1.4 Souhrn provedené analýzy 13

1.2 Ćıle práce . 13

1.2.1 Specifikace ćıl̊u . 13

1.3 Struktura práce . 14

2 Analýza a předpoklady 16

2.1 Analýza trhu a existuj́ıćıch řešeńı 16

2.1.1 Technické implementace dominantńıch platforem . . . 16

2.2 Technologické předpoklady a rámec projektu 17

2.2.1 Použité technologie . 17

2.2.2 High Availability (HA) 19

2.3 Funkčńı a nefunkčńı požadavky 20

2.3.1 Funkčńı požadavky . 20

2.3.2 Nefunkčńı požadavky 21

3 Návrh architektury systému 23

3.1 Celkový přehled architektury 23

3.1.1 Přehled klientské strany 24

3.1.2 Přehled serverové části 25

7

3.2 Mikroservisńı architektura na platformě Kubernetes 26

3.3 Komunikačńı vrstvy . 28

3.4 Bezpečnost nasazeného ekosystému 29

3.5 Limitace prostřed́ı . 30

3.6 Databázové řešeńı . 32

4 Detail implementace kĺıčových komponent 34

4.1 Autentizace a bezpečnost . 34

4.1.1 Implementace Passkeys 34

4.1.2 QR Code Sign-in . 35

4.1.3 Vı́cefaktorová autentizace 35

4.1.4 Zař́ızeńım orientovaná autentizace 35

4.1.5 Bezpečnostńı mechanizmy na úrovni API 35

4.2 Mikroservisńı ekosystém . 36

4.2.1 Databázový ORM mapper 37

4.2.2 Autentizačńı middleware 38

4.2.3 Middleware pro validaci interńıch požadavk̊u 38

4.2.4 Middleware pro extrakci uživatelských dat 39

4.2.5 Autentizačńı mikroservisa 39

4.2.6 Uživatelská mikroservisa 40

4.2.7 Obsahová mikroservisa 40

4.2.8 Pluginová mikroservisa 41

4.3 Mobilńı aplikace . 42

4.4 Webová aplikace . 43

5 Ekosystém uživatelských plugin̊u 45

5.1 Aplikačńı vrstva . 45

5.1.1 Verzováńı API . 45

5.1.2 Registrace a pouštěńı event̊u 47

5.1.3 Dynamické uživatelské rozhrańı 49

5.2 Pluginová vrstva . 52

5.2.1 Sandoxing u nativńıch zař́ızeńı 52

8

5.3 UI . 54

5.3.1 Definice komponent̊u a jejich registrace 54

5.3.2 Renderováńı komponent̊u 55

6 Monitoring a benchmarking 59

6.1 Monitorováńı a logováńı . 59

6.2 Benchmarking . 60

7 Diskuze a vyhodnoceńı výsledk̊u 63

7.1 Hodnoceńı dosažených výsledk̊u 63

7.2 Porovnáńı s existuj́ıćımi řešeńımi 64

7.3 Omezeńı implementace a návrhy na budoućı rozvoj 65

8 Závěr 67

8.1 Shrnut́ı kĺıčových poznatk̊u 67

8.2 Doporučeńı pro budoućı výzkum a praxi 68

9 Př́ılohy 70

Slovńık pojmů 72

Literatura . 74

9

Kapitola 1

Úvod

1.1 Analýza potřeby nové sociálńı platformy

Sociálńı média se stala ned́ılnou součást́ı každodenńıho života. Při pohledu

na č́ısla - přes 5,24 miliardy aktivńıch uživatel̊u po celém světě tráv́ı v

pr̊uměru v́ıce než dvě hodiny denně na těchto platformách. Je zřejmé, že jde

o významný fenomén s rozsáhlým dopadem na společnost. Tato kapitola ana-

lyzuje potřebu vývoje nové sociálńı platformy v kontextu současných trend̊u,

technologických možnost́ı a nedostatk̊u existuj́ıćıch řešeńı.

1.1.1 Současný stav sociálńıch platforem

Ekosystém sociálńıch médíı procháźı v roce 2025 významnou transformaćı.

Podle nejnověǰśıch dat (1) pr̊uměrný uživatel internetu využ́ıvá téměř 7

r̊uzných sociálńıch platforem měśıčně. Tato fragmentace ukazuje na rostoućı

specializaci platforem a diverzifikaci uživatelských potřeb v digitálńım pro-

storu.

Při analýze současných trend̊u lze identifikovat několik kĺıčových změn.

Algoritmy pro distribuci obsahu procházej́ı rekalibraćı - platformy již nehod-

not́ı úspěch pouze podle počtu zobrazeńı, ale zaměřuj́ı se v́ıce na kvalitu

interakćı a udržeńı uživatel̊u. Tento posun odráž́ı rostoućı konkurenci o po-

zornost uživatel̊u(2).

10

Zároveň docháźı k saturaci informačńıho prostoru obsahem generovaným

umělou inteligenćı, což vytvář́ı nové výzvy pro udržeńı autenticity. Uživatelé

stále v́ıce preferuj́ı autentický obsah a transparentńı komunikaci. Úspěšńı

tv̊urci již nestav́ı svou strategii primárně na objemu obsahu, ale na analy-

ticky podloženém př́ıstupu k tvorbě relevantńıho obsahu pro konkrétńı ćılové

skupiny.

Tyto změny vytvářej́ı prostor pro nové př́ıstupy k návrhu platforem,

které by lépe reflektovaly měńıćı se preference uživatel̊u a řešily nedostatky

současných platforem v oblastech autenticity, personalizace a kontroly nad

obsahem.

1.1.2 Problematika obchodně orientovaného př́ıstupu

Při analýze současných sociálńıch śıt́ı lze identifikovat, alespoň z uživatelského

hlediska, d̊uležitý aspekt. Dominantńı platformy jsou primárně orientovány

na obchodńı zájmy, nikoliv na potřeby uživatel̊u. Toto se projevuje v několika

kĺıčových aspektech.

Uzavřené algoritmy funguj́ı jako netransparentńı mechanizmy, které ne-

poskytuj́ı dostatečnou kontrolu nad konzumovaným obsahem. Jsou navrženy

tak, aby maximalizovaly zapojeńı uživatel̊u a dobu strávenou na platformě,

což vede k vytvářeńı
”
filtračńıch bublin“ (3) a podporuje informačńı války

(IW) (4).

Daľśım problémem je absence možnost́ı personalizace. Uživatelé maj́ı mi-

nimálńı kontrolu nad vzhledem a funkcionalitou rozhrańı, což omezuje schop-

nost přizp̊usobit platformu vlastńım potřebám. Vzhledem k dynamičnosti

sociálńıch platforem je to významný problém. Při implementaci nových funkćı

jsou uživatelé nuceni přijmout všechny změny bez možnosti zachovat prefe-

rované aspekty předchoźıch verźı. Tato absence kontroly představuje dlouho-

dobý problém pro vztah mezi platformou a jej́ımi uživateli.

Ekonomický model současných platforem je často nevýhodný pro tv̊urce

obsahu. Platformy si běžně účtuj́ı až 45% z př́ıjmů tv̊urc̊u a neposkytuj́ı dyna-

mické modely podporuj́ıćı jejich r̊ust. Např́ıklad YouTube si ponechává 45%

11

ze všech př́ımých př́ıjmů tv̊urc̊u, což limituje potenciál kreativńı ekonomiky

a může vést k odlivu talent̊u na alternativńı platformy(5).

1.1.3 Technologické nedostatky současných řešeńı

Z technologického hlediska vykazuj́ı současné sociálńı platformy několik významných

nedostatk̊u. Chyb́ı jim kvalitńı multiplatformńı podpora, což bráńı konzis-

tentńı uživatelské zkušenosti na r̊uzných zař́ızeńıch. Webová rozhrańı jsou

často neoptimalizovaná, primárně přizp̊usobená mobilńım zař́ızeńım bez adekvátńıho

využit́ı možnost́ı desktopových prohĺıžeč̊u.

V oblasti bezpečnosti a autentizace z̊ustávaj́ı dominantńı platformy po-

zadu. Zastaralé autentizačńı mechanizmy založené primárně na heslech představuj́ı

bezpečnostńı riziko a zhoršuj́ı uživatelskou zkušenost. Absence podpory mo-

derněǰśıch př́ıstup̊u, jako jsou Passkeys, které nab́ızej́ı vyšš́ı úroveň zabezpečeńı

při současném zjednodušeńı procesu přihlašováńı, ukazuje na technologickou

stagnaci v této oblasti.

Ochrana zranitelných skupin, zejména dět́ı, je řešena nedostatečně. Im-

plementované mechanizmy se často omezuj́ı pouze na základńı omezeńı času

bez sofistikovaněǰśıch př́ıstup̊u k ochraně před nevhodným obsahem. Tento

př́ıstup neodpov́ıdá rostoućımu d̊urazu na digitálńı wellbeing a bezpečnost

online prostřed́ı.

V př́ıpadech, kdy platformy implementuj́ı základńı filtračńı mechanizmy

pro ochranu mladš́ıch uživatel̊u, jako v př́ıpadě YouTube Kids, docháźı k frag-

mentaci uživatelského prostřed́ı formou oddělených aplikaćı bez adekvátńı

integrace s hlavńı platformou. Specializované verze maj́ı významná omezeńı

v personalizaci obsahu a chyb́ı jim mechanizmy pro zachováńı preferenćı

při přechodu mezi prostřed́ımi. Absence graduálńıho přechodového modelu

mezi platformami pro r̊uzné věkové kategorie představuje významný problém

zejména pro adolescentńı uživatele, kteř́ı přer̊ustaj́ı dětské platformy, ale

zároveň nejsou dostatečně chráněni před potenciálně nevhodným obsahem

v prostřed́ı pro dospělé.

12

1.1.4 Souhrn provedené analýzy

Na základě provedené analýzy lze dospět k závěru, že existuje významný pro-

stor pro vývoj nové sociálńı platformy, která by řešila identifikované nedo-

statky současných řešeńı. Kombinace uživatelsky orientovaného př́ıstupu, po-

kročilých architektonických princip̊u, moderńıch autentizačńıch mechanismů

a personifikovatelné platformy představuje slibný směr pro implementaci ta-

kové platformy.

1.2 Ćıle práce

Hlavńım ćılem této práce je navrhnout a implementovat robustńı sociálńı

platformu s integrovaným ekosystémem plugin̊u, která řeš́ı identifikované ne-

dostatky současných řešeńı. Práce se zaměřuje na vytvořeńı komplexńı ar-

chitektury, která bude reflektovat aktuálńı technologické trendy a zároveň

poskytne uživatelsky orientovaný př́ıstup k sociálńım interakćım v digitálńım

prostoru.

1.2.1 Specifikace ćıl̊u

Primárńım ćılem je vyvinout modulárńı architekturu sociálńı platformy, která

umožńı flexibilńı rozšǐritelnost prostřednictv́ım pluginového systému založeného

na technologii WebAssembly. Tato architektura je navrhována s ohledem na

škálovatelnost, bezpečnost a udržitelnost kódu.

• Sekundárńım ćılem je implementace pokročilých autentizačńıch mecha-

nismů s podporou standardu FIDO2 (6) a technologie Passkeys.

• Třet́ım ćılem je vytvořeńı multiplatformńıho řešeńı s optimalizovaným

uživatelským rozhrańım pro r̊uzná zař́ızeńı, které poskytne konzistentńı

uživatelskou zkušenost např́ıč desktopovými i mobilńımi platformami.

• Čtvrtým ćılem je návrh a implementace transparentńıch algoritmů pro

distribuci obsahu, které uživatel̊um poskytnou větš́ı kontrolu nad kon-

13

zumovaným obsahem a umožńı personalizaci informačńıho toku podle

individuálńıch preferenćı.

• Pátým ćılem je vytvořeńı graduálńıho přechodového modelu pro r̊uzné

věkové kategorie uživatel̊u, který zajist́ı adekvátńı ochranu zranitelných

skupin při zachováńı možnost́ı personalizace a uživatelské svobody.

• Šestým ćılem je implementace ekonomického modelu podporuj́ıćıho

tv̊urce obsahu prostřednictv́ım spravedlivěǰśıho rozděleńı př́ıjmů a dy-

namických nástroj̊u pro podporu r̊ustu komunity.

Posledńım ćılem je evaluace vytvořeného řešeńı z hlediska uživatelské

zkušenosti, technické efektivity a potenciálu pro dlouhodobou udržitelnost

v dynamicky se měńıćım prostřed́ı sociálńıch médíı.

Dosažeńı těchto ćıl̊u by mělo vést k vytvořeńı sociálńı platformy, která

nejen řeš́ı současné nedostatky existuj́ıćıch řešeńı, ale také poskytuje flexi-

bilńı základ pro budoućı inovace v oblasti sociálńıch interakćı v digitálńım

prostoru.

1.3 Struktura práce

Tato práce je strukturována do osmi hlavńıch kapitol, které systematicky

pokrývaj́ı celý proces návrhu a implementace robustńı sociálńı platformy s

ekosystémem plugin̊u.

Úvodńı kapitola představuje problematiku sociálńıch platforem v současném

digitálńım prostřed́ı. Analyzuje potřebu nové sociálńı platformy v kontextu

identifikovaných nedostatk̊u existuj́ıćıch řešeńı a stanovuje ćıle práce, které

reflektuj́ı ambici vytvořit uživatelsky orientovanou sociálńı platformu s d̊urazem

na modularitu a rozšǐritelnost.

Druhá kapitola se věnuje detailńı analýze trhu a existuj́ıćıch řešeńı, přičemž

definuje technologické předpoklady a rámec projektu. Zvláštńı pozornost

je věnována technologickému stacku zahrnuj́ıćımu Kubernetes a na ně na-

14

vazuj́ıćı daľśı technologie. Kapitola rovněž specifikuje funkčńı a nefunkčńı

požadavky, které formuj́ı základ pro následný návrh architektury.

Třet́ı kapitola představuje komplexńı návrh architektury systému. Zač́ıná

celkovým přehledem architektury s d̊urazem na klientskou a serverovou část,

pokračuje popisem mikroservisńı architektury implementované na platformě

Kubernetes a věnuje se komunikačńım vrstvám, bezpečnostńım aspekt̊um a

databázovému řešeńı. Diskutuje také limitace zvoleného prostřed́ı.

Čtvrtá kapitola se zaměřuje na detailńı implementaci kĺıčových kompo-

nent systému. Popisuje správu kĺıč̊u pomoćı HashiCorp Vault, implemen-

taci autentizačńıch mechanismů a bezpečnostńıch prvk̊u, strukturu mikro-

servisńıho ekosystému a implementaci frontendové aplikace v React Native

Expo a Next.js.

Pátá kapitola je věnována ekosystému uživatelských plugin̊u, který představuje

jeden z hlavńıch inovativńıch prvk̊u navrhovaného řešeńı. Popisuje aplikačńı

vrstvu včetně verzovaćı API a mechanismů pro registraci a zpracováńı událost́ı,

pluginovou vrstvu se zaměřeńım na sandboxing u nativńıch zař́ızeńı a imple-

mentaci uživatelského rozhrańı s d̊urazem na dynamické renderováńı kom-

ponent̊u.

Šestá kapitola se zabývá monitoringem a benchmarkingem implemento-

vaného systému, přičemž popisuje použité nástroje a metodiky pro monito-

rováńı výkonu a stability platformy.

Sedmá kapitola přináš́ı diskuzi a vyhodnoceńı dosažených výsledk̊u. Hod-

not́ı mı́ru naplněńı stanovených ćıl̊u, porovnává implementované řešeńı s exis-

tuj́ıćımi alternativami a identifikuje omezeńı současné implementace spolu s

návrhy na budoućı rozvoj.

Závěrečná kapitola shrnuje kĺıčové poznatky źıskané během realizace pro-

jektu a formuluje doporučeńı pro budoućı výzkum a praxi v oblasti vývoje

sociálńıch platforem.

Práce je doplněna př́ılohami obsahuj́ıćımi diagramy architektury, ukázky

kódu, konfiguračńı soubory a daľśı relevantńı dokumentaci, které poskytuj́ı

detailněǰśı vhled do technických aspekt̊u implementovaného řešeńı.

15

Kapitola 2

Analýza a předpoklady

2.1 Analýza trhu a existuj́ıćıch řešeńı

Na rozd́ıl od obecné analýzy v úvodńı kapitole se tato sekce zaměřuje na

konkrétńı technické implementace existuj́ıćıch sociálńıch platforem a jejich

architektonické př́ıstupy. Ćılem je identifikovat specifické technické aspekty,

které lze vylepšit v navrhovaném řešeńı.

2.1.1 Technické implementace dominantńıch platforem

Současné sociálńı platformy využ́ıvaj́ı r̊uzné architektonické př́ıstupy k řešeńı

problémů škálovatelnosti, bezpečnosti a uživatelské zkušenosti. Meta (Face-

book, Instagram) implementovala rozsáhlou mikroservisńı architekturu s pro-

prietárńımi řešeńımi pro škálováńı a distribuci zátěže. Společnost vyvinula

vlastńı systém pro správu kontejner̊u podobný Kubernetes a specializované

nástroje pro monitorováńı výkonu. Z hlediska autentizace však platforma

spoléhá primárně na tradičńı hesla doplněná dvoufaktorovou autentizaćı, bez

plné podpory moderńıch standard̊u jako FIDO2. (7)

X (dř́ıve Twitter) prošel významnou architektonickou transformaćı, kdy

p̊uvodńı monolitickou aplikaci nahradil mikroservisńı architekturou. Plat-

forma využ́ıvá kombinaci proprietárńıch a open-source technologíı pro správu

infrastruktury. Významným aspektem architektury X je d̊uraz na real-time

16

zpracováńı dat, což vytvář́ı specifické výzvy pro škálováńı a konzistenci. (8)

TikTok představuje moderńı př́ıstup s d̊urazem na efektivńı distribuci vi-

deo obsahu a pokročilé algoritmy pro personalizaci. Platforma využ́ıvá cloud-

native př́ıstup a proprietárńı řešeńı pro zpracováńı multimediálńıho obsahu. Z

bezpečnostńıho hlediska však TikTok čeĺı kritice kv̊uli nedostatečné transpa-

rentnosti zpracováńı uživatelských dat. (9)

2.2 Technologické předpoklady a rámec pro-

jektu

V návaznosti na identifikované technologické mezery existuj́ıćıch platforem

tato kapitola představuje technologický stack využitý při implementaci na-

vrhovaného řešeńı. Zvolené technologie byly pečlivě vybrány s ohledem na

jejich schopnost adresovat zjǐstěné nedostatky a poskytnout robustńı základ

pro moderńı sociálńı platformu s dynamickým pluginovým systémem.

Zat́ımco dominantńı platformy jako Meta a Twitter vyvinuly proprietárńı

řešeńı pro správu kontejner̊u a mikroslužeb, navrhované řešeńı stav́ı na stan-

dardizovaných open-source technologíıch, které umožňuj́ı větš́ı flexibilitu a

transparentnost. Namı́sto vytvářeńı uzavřených ekosystémů se zaměřuje na

implementaci otevřené architektury, která podporuje rozšǐritelnost a intero-

perabilitu.

2.2.1 Použité technologie

Kubernetes slouž́ı jako platforma pro orchestraci kontejnerizovaných aplikaćı.

Umožňuje efektivńı škálováńı, automatizovanou správu a nasazeńı jednot-

livých mikroslužeb. Mezi hlavńı př́ınosy patř́ı robustnost a flexibilita správy

clusteru. V rámci implementace jsou využ́ıvány pokročilé funkce jako Ingress

pro směrováńı provozu, pravidla śıt’ové komunikace (Network Policies), ta-

jemstv́ı (Secret) a konfiguračńı mapy (ConfigMaps) pro správu konfigurace a

manažer certifikát̊u pro automatickou správu SSL certifikát̊u. Volba Kuber-

17

netes oproti alternativám jako Docker Swarm byla učiněna předevš́ım kv̊uli

potřebě vyšš́ı škálovatelnosti a robustněǰśıho ekosystému pro správu mikro-

služeb, které jsou kĺıčové pro architekturu moderńı sociálńı śıtě.

Consul je nástroj určený pro správu, registraci a konfiguraci mikroservis.

Dı́ky implementaci Service Mesh lze dosáhnout bezpečné komunikace mezi

jednotlivými službami prostřednictv́ım mTLS. V rámci projektu je Consul

využ́ıván ve třech kĺıčových roĺıch: jako API Gateway pro centralizovanou

správu př́ıstupu k API, jako Service Mesh pro zabezpečenou komunikaci

mezi službami s využit́ım Proxy Defaults a jako Terminating Gateway pro

bezpečnou komunikaci s exterńımi službami. Volba Consulu oproti alterna-

tivám jako Istio byla provedena na základě jeho nižš́ıch nárok̊u na hardwarové

zdroje při zachováńı kĺıčové funkcionality.

Jako relačńı databázový systém je využ́ıván PostgreSQL s nadstavbou

Spillo a Patroni pro zajǐstěńı vysoké dostupnosti. Tato kombinace umožňuje

automatickou replikaci dat a failover v př́ıpadě výpadku primárńıho uzlu.

Výhody spoč́ıvaj́ı v robustnosti, podpoře pokročilých dotazovaćıch mecha-

nismů a možnosti využit́ı postgresql-operatoru pro zajǐstěńı vysoké dostup-

nosti. Spillo byl zvolen pro jeho jednoduchost při konfiguraci Patroni s Post-

greSQL a nastaveńı databázových připojeńı.

HashiCorp Vault slouž́ı k bezpečné správě tajemstv́ı a šifrovaćıch kĺıč̊u.

Umožňuje dynamickou distribuci a bezpečné ukládáńı citlivých dat, č́ımž

minimalizuje riziko jejich úniku. V rámci projektu je Vault plánován jako

kĺıčový komponent pro správu šifrovaćıch kĺıč̊u a zabezpečeńı citlivých dat.

Jedná se o jediné self-hosted řešeńı pro správu kĺıč̊u (KMS), které je dobře

integrováno s Consulem a poskytuje komplexńı možnosti pro zabezpečeńı dat

v mikroservisńım prostřed́ı.

Pro vývoj mobilńıch aplikaćı byl zvolen framework React Native Expo,

který umožňuje rychlý vývoj multiplatformńıch aplikaćı. Expo podporuje

snadnou integraci s nativńımi funkcemi zař́ızeńı a zajǐst’uje konzistentńı uživatelský

zážitek např́ıč r̊uznými operačńımi systémy. Pro webovou část aplikace je

využ́ıván Next.js jako moderńı React framework poskytuj́ıćı optimálńı vývojové

18

prostřed́ı a výkonnostńı optimalizace. Volba těchto technologíı byla učiněna

na základě jejich multiplatformńıho charakteru a synergie s existuj́ıćımi zna-

lostmi React ekosystému. V rámci implementace byly vyvinuty vlastńı na-

tivńı moduly v Kotlinu pro podporu WebAssembly a Passkey autentizace,

které nejsou standardně součást́ı React Native Expo.

WebAssembly je technologie umožňuj́ıćı spouštěńı vysoce výkonného kódu

v sandboxovaném prostřed́ı. V projektu je využ́ıvána pro implementaci dyna-

mického pluginového systému, který zajǐst’uje modularitu a bezpečné rozš́ı̌reńı

funkčnosti. WASM byl zvolen předevš́ım pro jeho multiplatformńı povahu a

robustńı bezpečnostńı model, který zajǐst’uje, že spouštěńı plugin̊u třet́ıch

stran neohroźı stabilitu a bezpečnost aplikace.

Pro efektivńı distribuci statického obsahu je využ́ıvána śıt’ Cloudflare R2

CDN, která poskytuje globálńı śıt’ pro rychlé doručováńı mediálńıho ob-

sahu. Toto řešeńı významně snižuje latenci při nač́ıtáńı obrázk̊u a vidéı a

zároveň redukuje zátěž na backend infrastrukturu. Cloudflare R2 nab́ıźı také

ochranu proti DDoS útok̊um a efektivńı caching mechanizmy, které optima-

lizuj́ı náklady na provoz.

Pro zajǐstěńı komplexńıho monitorováńı a logováńı je implementován

stack Grafana, Loki a Prometheus běž́ıćı v Kubernetes clusteru mimo Consul

Service Mesh. Tento stack poskytuje robustńı nástroje pro sledováńı výkonu,

detekci anomálíı a analýzu log̊u, což je kĺıčové pro udržeńı stability a výkonu

komplexńıho mikroservisńıho prostřed́ı.

2.2.2 High Availability (HA)

Vysoká dostupnost představuje kĺıčový aspekt navrhované architektury, zajǐst’uj́ıćı

nepřetržitý provoz systému i v př́ıpadě selháńı jednotlivých komponent. V

kontextu implementovaného řešeńı zahrnuje HA několik úrovńı redundance.

Na úrovni mikroslužeb je vysoká dostupnost zajǐstěna prostřednictv́ım Con-

sul Service Mesh, který umožňuje implementaci Mesh Gateway pro komu-

nikaci mezi v́ıce clustery. Tento př́ıstup zajǐst’uje efektivńı škálováńı mik-

roslužeb uvnitř Service Mesh. Na úrovni databáze je implementována vy-

19

soká dostupnost pomoćı Spillo s Patroni a PostgreSQL, což zajǐst’uje auto-

matickou replikaci dat a mechanismus hlasováńı pro určeńı master uzlu v

př́ıpadě výpadku. Na úrovni infrastruktury je využ́ıván Kubernetes pro au-

tomatické zotaveńı po výpadku a redistribuci zátěže mezi dostupnými uzly.

Tento v́ıcevrstvý př́ıstup k vysoké dostupnosti je nezbytný pro zajǐstěńı spo-

lehlivého provozu globálně dostupné sociálńı śıtě s předpokládaným vysokým

počtem současně připojených uživatel̊u.

Zvolený technologický stack představuje vyvážený kompromis mezi ro-

bustnost́ı, flexibilitou a bezpečnost́ı. Každá z uvedených technologíı byla

pečlivě vybrána s ohledem na př́ınos k dosažeńı ćıl̊u projektu, tj. vytvořeńı

moderńı, škálovatelné a bezpečné sociálńı śıtě. Přestože implementace takto

komplexńıho technologického stacku představuje značnou výzvu z hlediska

učebńı křivky a integrace jednotlivých komponent, výsledné řešeńı posky-

tuje solidńı základ pro realizaci inovativńı sociálńı platformy s d̊urazem na

bezpečnost, škálovatelnost a rozšǐritelnost.

2.3 Funkčńı a nefunkčńı požadavky

Na základě analýzy trhu a identifikovaných technologických mezer byly sta-

noveny následuj́ıćı funkčńı a nefunkčńı požadavky pro navrhovanou sociálńı

platformu.

2.3.1 Funkčńı požadavky

Implementace robustńıho pluginového systému představuje kĺıčový funkčńı

požadavek navrhované platformy. Systém muśı umožnit rozš́ı̌reńı funkcio-

nality prostřednictv́ım WebAssembly, zajistit bezpečné spouštěńı kódu v

sandboxovaném prostřed́ı a poskytnout standardizované API pro interakci

s platformou. Pluginový systém by měl podporovat dynamické uživatelské

rozhrańı, registraci a zpracováńı událost́ı a verzováńı API pro zajǐstěńı dlou-

hodobé kompatibility.

Autentizačńı mechanizmy muśı zahrnovat podporu moderńıch standard̊u,

20

zejména Passkeys využ́ıvaj́ıćıch FIDO2 protokol, což eliminuje potřebu tradičńıch

hesel. Implementace QR kódu pro přihlášeńı představuje daľśı požadavek,

který zjednoduš́ı proces autentizace např́ıč zař́ızeńımi. Tyto mechanizmy

muśı být implementovány s d̊urazem na bezpečnost a uživatelskou př́ıvětivost.

Správa obsahu vyžaduje implementaci systému pro sd́ıleńı a ukládáńı mul-

timediálńıho obsahu, včetně obrázk̊u a textových př́ıspěvk̊u. Systém muśı

podporovat r̊uzné formáty obsahu a zajistit efektivńı distribuci prostřednictv́ım

CDN. Transparentńı algoritmy pro personalizaci zobrazovaného obsahu s

možnost́ı uživatelské kontroly představuj́ı daľśı kĺıčový požadavek.

Sociálńı interakce muśı být implementovány prostřednictv́ım systému uživatelských

kruh̊u (circles), který umožńı vytvářeńı sociálńıch vazeb mezi uživateli. Tento

systém muśı podporovat r̊uzné typy vztah̊u, včetně přátelstv́ı, sledováńı a

skupinových interakćı, a zajistit granulárńı kontrolu soukromı́ pro r̊uzné typy

sociálńıch vazeb. Uživatelé muśı mı́t možnost přidávat jiné uživatele do spe-

cifických kruh̊u a přizp̊usobovat viditelnost obsahu pro jednotlivé kruhy.

2.3.2 Nefunkčńı požadavky

Škálovatelnost systému představuje zásadńı nefunkčńı požadavek. Architek-

tura muśı být schopna horizontálńıho škálováńı pro podporu rostoućıho počtu

uživatel̊u a objemu dat. Implementace na platformě Kubernetes muśı umožnit

efektivńı distribuci zátěže a optimalizaci výkonu při špičkách.

Bezpečnost vyžaduje implementaci komplexńıch opatřeńı, včetně mTLS

pro zabezpečenou komunikaci mezi mikroslužbami, šifrováńı dat v klidu i

při přenosu a ochrany proti běžným typ̊um útok̊u. Autentizačńı mechani-

zmy muśı splňovat nejnověǰśı bezpečnostńı standardy a poskytovat robustńı

ochranu uživatelských účt̊u.

Observabilita systému muśı být zajǐstěna prostřednictv́ım implementace

monitorovaćıch a logovaćıch nástroj̊u. Tyto nástroje muśı poskytovat kom-

plexńı přehled o výkonu a stavu systému, umožnit detekci anomálíı a efektivńı

diagnostiku problémů.

Uživatelská zkušenost muśı být konzistentńı a optimalizovaná např́ıč r̊uznými

21

zař́ızeńımi a platformami. Implementace responzivńıho designu a optimali-

zace pro r̊uzné velikosti obrazovek a typy interakćı představuj́ı kĺıčové požadavky

v této oblasti. Systém muśı poskytovat intuitivńı rozhrańı pro správu uživatelských

kruh̊u a personalizaci obsahu.

Dostupnost systému muśı dosahovat vysoké úrovně (99,9% a vyšš́ı) prostřednictv́ım

redundance, automatického zotaveńı po výpadku a geografické distribuce

služeb. Implementace strategie pro minimalizaci dopadu plánovaných údržbových

praćı představuje daľśı požadavek v této oblasti.

22

Kapitola 3

Návrh architektury systému

Tato kapitola představuje komplexńı návrh architektury systému sociálńı

platformy, která implementuje identifikované požadavky a řeš́ı nedostatky

současných řešeńı. Architektura je navržena s d̊urazem na modularitu, škálovatelnost

a bezpečnost, přičemž využ́ıvá moderńı technologické př́ıstupy popsané v

předchoźı kapitole. Platformu byla pojmenována Socigy.

3.1 Celkový přehled architektury

Navržená architektura sociálńı platformy Socigy představuje komplexńı eko-

systém vzájemně propojených komponent, které společně tvoř́ı robustńı základ

pro provoz moderńı sociálńı śıtě, jak je znázorněno na obrázku 3.1. Archi-

tektura je koncipována jako distribuovaný systém skládaj́ıćı se ze tř́ı hlavńıch

část́ı: klientské aplikace, cloudové infrastruktury a exterńıch služeb pro ukládáńı

a distribuci obsahu.

Z hlediska topologie je systém navržen jako v́ıcevrstvá architektura, kde

jednotlivé vrstvy maj́ı jasně definované odpovědnosti a rozhrańı. Tento př́ıstup

umožňuje nezávislý vývoj, testováńı a nasazeńı jednotlivých komponent, což

zvyšuje agilitu vývojového procesu a usnadňuje údržbu systému.

23

Obrázek 3.1: Přehled celkové architektury

3.1.1 Přehled klientské strany

Klientská část architektury, zobrazená na obrázku 3.2, je reprezentována

dvěma hlavńımi komponentami: mobilńı aplikaćı vyvinutou s využit́ım fra-

meworku React Native Expo a webovou aplikaćı implementovanou pomoćı

Next.js.

24

Obrázek 3.2: Přehled klientské architektury

3.1.2 Přehled serverové části

Serverová část architektury, označená jako ”Socigy Cloud”a znázorněná na

obrázku 3.3, představuje jádro celého systému a je implementována na plat-

formě Kubernetes.

25

Obrázek 3.3: Přehled serverové architektury

3.2 Mikroservisńı architektura na platformě

Kubernetes

Mikroservisńı architektura rozděluje komplexńı systém do menš́ıch, nezávisle

nasaditelných služeb komunikuj́ıćıch přes jasně definovaná rozhrańı. Zvolený

př́ıstup umožňuje nezávislý vývoj, testováńı a nasazeńı jednotlivých kompo-

nent, což výrazně zvyšuje agilitu vývojového procesu a usnadňuje údržbu

systému. V rámci implementace bylo identifikováno několik kĺıčových domén

reprezentovaných samostatnými mikroslužbami:

• Autentizace

• Správa uživatel̊u

26

• Správa obsahu

• Pluginy

• Umělá inteligence

• Messaging

• Komunity

• Reklamy

• Platby

Kubernetes poskytuje komplexńı sadu nástroj̊u pro orchestraci mikro-

služeb. Požadovaný stav systému je definován pomoćı deklarativńıch ma-

nifest̊u specifikuj́ıćıch počet replik, požadavky na výpočetńı zdroje, śıt’ové

politiky a daľśı konfiguračńı parametry. Zvolená metoda umožňuje verzováńı

infrastruktury jako kódu a zajǐst’uje transparentńı mechanismus pro správu

změn.

Pro zajǐstěńı izolace a správu výpočetńıch zdroj̊u jsou využ́ıvány Ku-

bernetes namespaces poskytuj́ıćı logické odděleńı jednotlivých část́ı systému.

Implementace umožňuje efektivńı správu př́ıstupových oprávněńı a nastaveńı

śıt’ových politik.

Konfigurace mikroslužeb je realizována prostřednictv́ım ConfigMaps a

Secrets, které zajǐst’uj́ı správu konfiguračńıch parametr̊u a citlivých infor-

maćı. ConfigMaps slouž́ı pro běžné konfiguračńı parametry, zat́ımco Secrets

ukládaj́ı citlivé informace jako př́ıstupové údaje k databázi nebo API kĺıče.

Implementovaný př́ıstup odděluje konfiguraci od kódu a umožňuje dynamic-

kou aktualizaci bez nutnosti rekompilace a nasazeńı nových verźı aplikaćı.

Vysoká dostupnost a odolnost v̊uči výpadk̊um je zajǐstěna strategíı rozložeńı

zátěže např́ıč v́ıce uzly v rámci Availability Zone. Kubernetes automaticky

distribuuje instance mikroslužeb mezi dostupné uzly a při výpadku jednoho

uzlu přesouvá postižené instance na funkčńı uzly, č́ımž minimalizuje dopad

na dostupnost služby.

27

Správa nasazeńı nových verźı mikroslužeb je realizována strategíı rol-

ling update, která postupně nahrazuje běž́ıćı instance novými verzemi bez

výpadku služby. Implementace minimalizuje riziko spojené s nasazeńım nových

verźı a umožňuje rychlé zotaveńı při problémech.

Pro monitorováńı stavu a výkonu mikroslužeb jsou implementovány rea-

diness a liveness probes, které Kubernetes využ́ıvá k detekci nefunkčńıch in-

stanćı a jejich automatickému restartováńı. Readiness probes určuj́ı připravenost

nově nasazené instance přij́ımat provoz, zat́ımco liveness probes detekuj́ı in-

stance v nekonzistentńım stavu vyžaduj́ıćı restart.

3.3 Komunikačńı vrstvy

Efektivńı komunikace mezi komponentami systému představuje kĺıčový aspekt

navržené architektury. Jak ukazuje obrázek 3.1, systém využ́ıvá speciali-

zované komunikačńı vrstvy zajǐst’uj́ıćı bezpečnou, spolehlivou a výkonnou

výměnu dat.

Pro komunikaci mezi mikroslužbami v Service Mesh je primárně využ́ıván

protokol gRPC, který poskytuje vysoký výkon, ńızkou latenci a podporu

streamováńı dat. Tento protokol, založený na HTTP/2, umožňuje efektivńı

serializaci strukturovaných dat pomoćı Protocol Buffers a podporuje bidi-

rekcionálńı streamováńı, což je zásadńı pro implementaci real-time funkćı

sociálńı platformy. Výhodou gRPC je také generováńı klientských a ser-

verových rozhrańı z definičńıch soubor̊u, což výrazně zjednodušuje vývoj a

údržbu API.

Consul Service Mesh je implementován prostřednictv́ım Envoy proxy

nasazených jako sidecary vedle každé instance mikroslužby. Tento př́ıstup,

označovaný jako sidecar pattern, umožňuje transparentńı implementaci śıt’ových

funkćı bez nutnosti modifikace kódu mikroslužeb. Komunikace mezi mikro-

službami procháźı přes Envoy proxy, která zajǐst’uje směrováńı, load balan-

cing, circuit breaking a daľśı pokročilé śıt’ové funkce.

API Gateway, implementovaná pomoćı Consul API Gateway, slouž́ı jako

28

vstupńı bod pro exterńı požadavky a směruje je na př́ıslušné mikroslužby.

Tato komponenta podporuje r̊uzné protokoly včetně HTTP/1.1, HTTP/2 a

gRPC, což umožňuje efektivńı komunikaci s r̊uznými typy klient̊u.

Pro zabezpečenou komunikaci s exterńımi službami mimo Service Mesh

je implementována Terminating Gateway. Ta zajǐst’uje terminaci mTLS a

překlad mezi zabezpečenou komunikaćı uvnitř Service Mesh a potenciálně

nezabezpečenou komunikaćı s exterńımi systémy. Toto řešeńı umožňuje mik-

roslužbám bezpečně komunikovat s exterńımi API, databázemi nebo legacy

systémy.

Pro podporu real-time komunikace mezi klienty a serverem je využ́ıvána

technologie SignalR, která poskytuje vysokoúrovňové abstrakce pro Web-

Sockets, Server-Sent Events a Long Polling. Tato technologie umožňuje efek-

tivńı implementaci notifikaćı, chat̊u a daľśıch real-time funkćı s minimálńımi

nároky na vývoj.

Směrováńı śıt’ového provozu uvnitř Kubernetes clusteru mimo Service

Mesh je realizováno prostřednictv́ım Kubernetes DNS poskytuj́ıćıho service

discovery mechanismus. Každá služba registrovaná v Kubernetes je dostupná

přes DNS záznam ve formátu <service-name>.<namespace>.svc.cluster.local,

což umožňuje transparentńı komunikaci mezi službami bez znalosti fyzické

lokace.

3.4 Bezpečnost nasazeného ekosystému

Bezpečnost představuje kritický aspekt navržené architektury, zejména u

sociálńı platformy zpracovávaj́ıćı citlivá uživatelská data. Implementovaný

bezpečnostńı model zahrnuje několik vrstev ochrany.

Zabezpečeńı komunikace je realizováno prostřednictv́ım mutual TLS (mTLS),

kdy komunikuj́ıćı strany vzájemně ověřuj́ı identitu pomoćı certifikát̊u. Con-

sul Service Mesh automaticky zajǐst’uje vydáváńı, distribuci a rotaci certi-

fikát̊u pro služby. Tento mechanismus efektivně bráńı odposloucháváńı ko-

munikace a man-in-the-middle útok̊um, což je zásadńı pro ochranu citlivých

29

uživatelských dat.

Access Control Lists (ACL) jsou implementovány na úrovni Consulu pro

ř́ızeńı př́ıstupu ke službám a jejich API. Tento mechanismus umožňuje gra-

nulárńı definici oprávněńı a zajǐst’uje, že každá služba má př́ıstup pouze k

nezbytným zdroj̊um.

Intentions v Service Mesh definuj́ı povolené komunikačńı cesty mezi službami.

Je zde implementován princip nejnižš́ıch oprávněńı (princip least privilege),

kdy je komunikace mezi službami povolena pouze při explicitńı definici.

Pro správu tajemstv́ı a šifrovaćıch kĺıč̊u je využ́ıván HashiCorp Vault

(KMS), který poskytuje centralizované úložǐstě pro citlivé informace s me-

chanizmy pro ř́ızeńı př́ıstupu a audit. Tato komponenta je kĺıčová pro imple-

mentaci šifrováńı dat v klidu i při přenosu a bezpečnou správu autentizačńıch

údaj̊u.

Certificate Manager zajǐst’uje automatickou správu SSL certifikát̊u v Ku-

bernetes clusteru. Tento nástroj eliminuje rizika spojená s manuálńı správou

certifikát̊u a zajǐst’uje šifrováńı veškeré exterńı komunikace pomoćı platných

certifikát̊u.

Network Policies definuj́ı povolené komunikačńı cesty na úrovni śıt’ové

vrstvy, č́ımž poskytuj́ı daľśı úroveň izolace a ochrany proti laterálńımu po-

hybu při kompromitaci některé komponenty systému.

3.5 Limitace prostřed́ı

Navržená architektura sociálńı platformy Socigy vykazuje přes svou robust-

nost několik limitaćı, které bude nutné adresovat v kontextu dlouhodobého

vývoje a škálováńı systému.

Hlavńı technologickou výzvou současné implementace je chyběj́ıćı nativńı

podpora multi-port konfigurace ve stabilńıch verźıch Consul Service Mesh.

Tato limitace se projevuje zejména při implementaci komplexńıch komu-

nikačńıch vzor̊u, kdy mikroslužby potřebuj́ı současně podporovat r̊uzné ko-

munikačńı protokoly (gRPC, HTTP/1.1, SignalR) bez př́ımé implementace

30

HTTPS na úrovni aplikačńıho kontejneru.

K překonáńı této bariéry bylo nutné integrovat Nginx proxy server jako

doplňkovou komponentu v každém kontejneru mikroslužby. Nginx vysta-

vuje jeden port viditelný pro Envoy proxy a interně zajǐst’uje směrováńı

požadavk̊u mezi r̊uznými porty určenými pro specifické komunikačńı pro-

tokoly. Toto řešeńı sice efektivně obcháźı základńı limitaci Service Mesh, ale

zároveň zvyšuje komplexitu nasazeńı a vytvář́ı dodatečnou výpočetńı režii.

Daľśı významnou limitaćı současné implementace je absence Mesh Ga-

teway pro usnadněńı komunikace mezi v́ıce Kubernetes clustery. Aktuálńı ar-

chitektonická konfigurace omezuje nasazeńı systému na jeden cluster (Availa-

bility Zone), což výrazně limituje možnosti geografické distribuce a představuje

riziko z hlediska vysoké dostupnosti při katastrofickém selháńı datového cen-

tra.

Implementace Consul Service Mesh přirozeně generuje určitou výpočetńı

režii vyplývaj́ıćı z nutnosti provozovat Envoy proxy paralelně s každou in-

stanćı mikroslužby. Tato režie může být významná zejména v prostřed́ıch s

omezenými výpočetńımi zdroji nebo při nasazeńı velkého počtu mikroslužeb

s minimálńımi požadavky na výpočetńı výkon.

Integrace s exterńımi systémy prostřednictv́ım Terminating Gateway představuje

potenciálńı výkonnostńı úzké mı́sto při zvýšeném objemu komunikace s ex-

terńımi službami. Aktuálńı implementace neumožňuje automatické škálováńı

Terminating Gateway na základě dynamického zat́ıžeńı, což vyžaduje kon-

tinuálńı monitoring a ručńı úpravy konfigurace.

Architektura byla primárně optimalizována pro nasazeńı v cloudovém

prostřed́ı. Migrace do on-premise infrastruktury nebo hybridńıho řešeńı by

mohla vyžadovat významné úpravy zejména v oblastech automatického škálováńı,

rozložeńı zátěže a service discovery.

31

3.6 Databázové řešeńı

Perzistenci dat v sociálńı platformě Socigy zajǐst’uje robustńı databázové

řešeńı založené na PostgreSQL s využit́ım Spillo a Patroni pro implementaci

vysoké dostupnosti. Jak je znázorněno na obrázku 3.3, databázová architek-

tura je navržena s d̊urazem na spolehlivost, výkon a odolnost v̊uči výpadk̊um.

PostgreSQL byl zvolen jako primárńı databázový systém d́ıky pokročilým

funkćım, včetně podpory komplexńıch datových typ̊u, indexováńı pomoćı

GIN a GiST index̊u, které jsou zásadńı pro efektivńı vyhledáváńı v sociálńıch

datech, a robustńımu transakčńımu modelu zajǐst’uj́ıćımu integritu dat. Schéma

databáze bylo navrženo s ohledem na specifické požadavky sociálńı plat-

formy, zahrnuj́ıćı entity jako uživatelé, kruhy (circles), vztahy mezi uživateli

a zprávy, což umožňuje efektivńı reprezentaci sociálńıch vazeb a interakćı.

Pro zajǐstěńı vysoké dostupnosti je implementována architektura Master-

Slave s využit́ım streamovaćı replikace, která zajǐst’uje kontinuálńı replikaci

dat z primárńıho uzlu na replikačńı uzly. Konfigurace zahrnuje jeden primárńı

uzel (Master) a dva replikačńı uzly (Replica), což poskytuje redundanci dat

a možnost automatického failoveru při výpadku primárńıho uzlu.

Kĺıčovou komponentou pro správu architektury je Patroni, specializovaný

nástroj pro orchestraci PostgreSQL cluster̊u. Patroni implementuje mecha-

nizmy pro monitoring stavu databázových uzl̊u, detekci výpadk̊u a automa-

tickou volbu nového primárńıho uzlu z dostupných replik. Proces failoveru

minimalizuje dobu výpadku při selháńı primárńıho uzlu a zajǐst’uje kontinu-

itu služeb.

Spillo, PostgreSQL operátor pro Kubernetes, poskytuje integračńı vrstvu

mezi databázovým clusterem a Kubernetes ekosystémem. Komponenta zajǐst’uje

automatizovanou správu databázových cluster̊u, včetně provisioningu, zálohováńı,

obnovy a škálováńı.

Pro zajǐstěńı konzistence dat v distribuovaném prostřed́ı byly implemen-

továny transakčńı mechanizmy a strategie pro řešeńı konflikt̊u. Databázové

schéma využ́ıvá pokročilé funkce PostgreSQL, jako jsou rozš́ı̌reńı uuid-ossp

pro generováńı unikátńıch identifikátor̊u a pgtrgm pro efektivńı fulltextové

32

vyhledáváńı.

Pravidelné zálohováńı a údržba databáze jsou zajǐstěny prostřednictv́ım

Kubernetes Cron Jobs. Konfigurace databáze je spravována pomoćı Kuber-

netes Config Maps, což umožňuje centralizovanou správu konfiguračńıch pa-

rametr̊u a jejich dynamickou aktualizaci bez nutnosti restartu databázových

instanćı.

33

Kapitola 4

Detail implementace kĺıčových

komponent

4.1 Autentizace a bezpečnost

Implementace autentizačńıch mechanismů a bezpečnostńıch opatřeńı je kĺıčovou

součást́ı návrhu sociálńı platformy Socigy. Systém využ́ıvá moderńı auten-

tizačńı metody s d̊urazem na zajǐstěńı bezpečnosti uživatelských dat při

současném zachováńı intuitivńıho uživatelského rozhrańı.

4.1.1 Implementace Passkeys

Primárńım autentizačńım mechanismem jsou Passkeys založené na standardu

FIDO2, které poskytuj́ı vysokou úroveň zabezpečeńı při současném zjed-

nodušeńı procesu přihlašováńı. Na webové platformě je funkcionalita rea-

lizována prostřednictv́ım WebAuthn API, což umožňuje př́ımou integraci s

biometrickými senzory zař́ızeńı a bezpečnostńımi kĺıči. (10)

Pro mobilńı aplikaci vyvinutou v React Native Expo bylo nezbytné im-

plementovat vlastńı nativńı modul pro platformu Android. Serverová část

autentizačńıho systému využ́ıvá specializovanou knihovnu vyvinutou FIDO

Alliance pro validaci autentizačńıch dat a správu registrovaných zař́ızeńı.

34

4.1.2 QR Code Sign-in

Alternativńım autentizačńım mechanismem je QR Code sign-in, který se v

současné době nacháźı ve fázi implementace. Tento př́ıstup umožňuje uživatel̊um

přihlášeńı do webové aplikace prostřednictv́ım naskenováńı QR kódu mo-

bilńım zař́ızeńım, na kterém jsou již autentizováni.

4.1.3 Vı́cefaktorová autentizace

Významným bezpečnostńım prvkem implementovaného systému je povinná

v́ıcefaktorová autentizace (MFA), která je aktivována automaticky při re-

gistraci nového uživatele. Primárńım faktorem je email MFA, kdy systém

vyžaduje verifikaci emailové adresy před dokončeńım registračńıho procesu.

Dále je implementována podpora pro Time-based One-Time Password (TOTP)

(11) jako alternativńı MFA metoda.

4.1.4 Zař́ızeńım orientovaná autentizace

Autentizačńı systém je orientován na zař́ızeńı (device-oriented authentication),

což přináš́ı několik zásadńıch výhod. Uživatelé mohou spravovat svá auten-

tizovaná zař́ızeńı prostřednictv́ım dedikovaného rozhrańı v nastaveńı účtu,

včetně možnosti okamžitého odebráńı př́ıstupových práv konkrétńımu zař́ızeńı.

Tento př́ıstup umožňuje implementaci pokročilých bezpečnostńıch politik na

úrovni jednotlivých zař́ızeńı a využit́ı autentizovaných zař́ızeńı pro sekundárńı

účely, jako je autorizace citlivých operaćı nebo implementace přihlášeńı po-

moćı QR kódu.

4.1.5 Bezpečnostńı mechanizmy na úrovni API

Na úrovni API a přenosu dat jsou implementována komplexńı bezpečnostńı

opatřeńı. Autentizačńı tokeny jsou ukládány v Secure, HttpOnly cookies, což

eliminuje riziko jejich odcizeńı prostřednictv́ım JavaScript kódu. Pro ochranu

proti Cross-Site Request Forgery (CSRF) útok̊um jsou implementovány Anti-

35

Forgery tokeny, které zajǐst’uj́ı, že požadavky na API pocházej́ı z legitimńıch

zdroj̊u.

Významným bezpečnostńım prvkem je implementace Cross-Origin Re-

source Sharing (CORS), která je realizována individuálně na úrovni každé

mikroslužby. Tento decentralizovaný př́ıstup byl zvolen z d̊uvodu rozd́ılných

požadavk̊u na př́ıstupnost dat v rámci jednotlivých služeb. CORS politiky

jsou nastaveny tak, aby povolovaly př́ıstup pouze z relevantńıch a ověřených

domén, č́ımž se minimalizuje riziko neoprávněného př́ıstupu k API. Indi-

viduálńı implementace CORS také umožňuje flexibilńı př́ıstup k budoućım

rozš́ı̌reńım funkcionality, jako je např́ıklad možnost embedováńı př́ıspěvk̊u

na exterńıch webových stránkách, kdy specifické endpointy mohou mı́t méně

restriktivńı CORS nastaveńı.

Komunikace mezi klientem a serverem je zabezpečena prostřednictv́ım

TLS/SSL s využit́ım moderńıch kryptografických algoritmů. Pro zvýšeńı

bezpečnosti webové aplikace jsou implementovány Content Security Policy

(CSP) a daľśı bezpečnostńı hlavičky, které poskytuj́ı ochranu proti r̊uzným

typ̊um útok̊u, včetně Cross-Site Scripting (XSS), clickjacking a data in-

jection. CSP definuje povolené zdroje pro nač́ıtáńı skript̊u, styl̊u, obrázk̊u

a daľśıch typ̊u obsahu, č́ımž minimalizuje riziko spuštěńı škodlivého kódu.

4.2 Mikroservisńı ekosystém

Implementace mikroservisńıho ekosystému představuje jádro navržené sociálńı

platformy. Mikroslužby jsou vyvinuty s využit́ım ASP.NET AOT 8, který po-

skytuje výkonnostńı optimalizace prostřednictv́ım kompilace Ahead-of-Time.

Architektura mikroslužeb je založena na principu Dependency Injection, což

umožňuje flexibilńı správu závislost́ı a usnadňuje testováńı jednotlivých kom-

ponent.

Komunikačńı infrastruktura mikroslužeb je realizována prostřednictv́ım

kombinace několika protokol̊u - gRPC pro vysokovýkonnou komunikaci mezi

službami, SignalR pro real-time komunikaci a standardńı HTTP/1.1 pro

36

REST API. Jádrem komunikačńı vrstvy je Kestrel server, který poskytuje

vysoký výkon a ńızkou latenci. Pro řešeńı omezeńı Consul Service Mesh v

oblasti multi-port konfigurace byl implementován vlastńı Dockerfile s inte-

grovaným Nginx, který funguje jako reverzńı proxy. HTTP/1.1 a SignalR ko-

munikace je mapována na port 5000, HTTP/2 gRPC na port 5001, zat́ımco

Nginx poslouchá na portu 8080, který je následně využ́ıván Envoy proxy v

rámci Service Mesh.

4.2.1 Databázový ORM mapper

Významným aspektem implementace mikroservisńıho ekosystému je vývoj

vlastńıho PostgreSQL ORM mapperu, který byl nezbytný z d̊uvodu kompa-

tibility s AOT kompilaćı. Entity Framework, standardńı ORM framework pro

.NET aplikace, neposkytuje plnou podporu pro AOT kompilaci, což vedlo k

nutnosti implementace vlastńıho řešeńı pro objektově-relačńı mapováńı.

Vyvinutý mapper implementuje základńı CRUD operace (Create, Read,

Update, Delete) a poskytuje typově bezpečné rozhrańı pro práci s databázovými

entitami. Architektura mapperu je založena na generických tř́ıdách, které

umožňuj́ı definovat mapováńı mezi databázovými tabulkami a doménovými

objekty. Mapper využ́ıvá Npgsql jako ńızkoúrovňového poskytovatele pro ko-

munikaci s PostgreSQL databáźı a implementuje vlastńı mechanizmy pro

správu připojeńı, transakce a mapováńı výsledk̊u dotaz̊u.

Kĺıčovou funkcionalitou mapperu je podpora pro kompilaci dotaz̊u v době

sestaveńı aplikace, což je v souladu s principy AOT kompilace. Tato vlastnost

eliminuje režii spojenou s dynamickou kompilaćı dotaz̊u za běhu a přisṕıvá

k celkovému výkonu aplikace. Mapper také implementuje optimalizace pro

dávkové operace a podporuje asynchronńı př́ıstup k databázi, což je kritické

pro škálovatelnost mikroslužeb.

Z hlediska bezpečnosti implementuje mapper parametrizované dotazy,

které efektivně bráńı SQL injection útok̊um. Mapper také poskytuje me-

chanizmy pro logováńı a monitorováńı databázových operaćı, což usnadňuje

diagnostiku a optimalizaci výkonu.

37

4.2.2 Autentizačńı middleware

V rámci mikroservisńıho ekosystému byl implementován specializovaný au-

tentizačńı middleware, který zajǐst’uje ověřeńı identity uživatel̊u a poskytuje

autentizačńı kontext pro zpracováńı požadavk̊u. Middleware funguje na prin-

cipu interceptoru, který zachytává př́ıchoźı požadavky a provád́ı autentizaci

před jejich předáńım ćılovým handler̊um.

Na Auth mikroslužbě funguje middleware lokálně prostřednictv́ım voláńı

vlastně vytvořeného interńıho rozhrańı ITokenService, které poskytuje me-

tody pro validaci a správu autentizačńıch token̊u. Toto řešeńı minimalizuje

śıt’ovou komunikaci a optimalizuje výkon autentizačńıho procesu.

Na ostatńıch mikroslužbách je autentizace realizována prostřednictv́ım

gRPC komunikace př́ımo s Auth mikroslužbou. Při př́ıchodu požadavku mid-

dleware extrahuje autentizačńı token, zaśılá jej prostřednictv́ım gRPC voláńı

do Auth mikroslužby k validaci a následně přikládá źıskaná uživatelská data

do HttpContextu. Tento př́ıstup zajǐst’uje centralizovanou správu autentizace

a konzistentńı aplikaci bezpečnostńıch politik např́ıč celým ekosystémem.

4.2.3 Middleware pro validaci interńıch požadavk̊u

Pro zabezpečeńı komunikace mezi mikroslužbami byl implementován vlastńı

middleware, který zajǐst’uje autentizaci a autorizaci interńıch požadavk̊u.

Původńı návrh poč́ıtal s využit́ım mTLS certifikát̊u poskytovaných Envoy

Proxy, což by umožnilo ověřeńı identity volaj́ıćı služby na základě certifikátu.

V d̊usledku nutnosti implementace multi-port konfigurace a podpory r̊uzných

komunikačńıch protokol̊u však bylo nezbytné přepnout Envoy Proxy do TCP

módu, který neposkytuje možnost předáváńı certifikát̊u v požadavćıch. Z

tohoto d̊uvodu byl návrh middlewaru modifikován a implementován alterna-

tivńı př́ıstup založený na OAuth klientech.

Nové řešeńı spoč́ıvá ve vytvořeńı OAuth klienta v Auth databázi pro

každou mikroslužbu. Při interńı komunikaci middleware ověřuje validitu kli-

enta a jeho tajného kĺıče prostřednictv́ım gRPC požadavku zaslaného do

38

Auth mikroslužby. Tento př́ıstup zajǐst’uje bezpečnou komunikaci mezi mik-

roslužbami i v prostřed́ı s omezeńımi danými TCP módem Envoy Proxy.

4.2.4 Middleware pro extrakci uživatelských dat

Pro zlepšeńı uživatelské zkušenosti a zvýšeńı bezpečnosti byl implementován

middleware, který analyzuje informace o klientském zař́ızeńı a prohĺıžeči.

Middleware extrahuje fingerprint zař́ızeńı a UserAgent řetězec z př́ıchoźıch

požadavk̊u a na základě těchto informaćı poskytuje kontextová data do Http-

Contextu.

Źıskané informace jsou využ́ıvány pro r̊uzné účely, včetně detekce po-

tenciálně podezřelých přihlášeńı, optimalizace uživatelského rozhrańı pro konkrétńı

zař́ızeńı a sběru analytických dat o použ́ıvaných zař́ızeńıch a prohĺıžeč́ıch.

4.2.5 Autentizačńı mikroservisa

Autentizačńı mikroservisa zajǐst’uje centralizovanou správu autentizace, au-

torizace a auditováńı v celém systému. Jádrem mechanismu je implementace

standardu FIDO2, poskytuj́ıćı bezpečné ověřováńı uživatel̊u bez tradičńıch

hesel. Pro správu přihlášeńı a udržováńı stavu autentizace jsou využ́ıvány

JWT (JSON Web Tokens).

Perzistence dat je zajǐstěna prostřednictv́ım dedikované auth_db databáze,

logicky oddělené od ostatńıch mikroservisńıch databáźı. Toto řešeńı podpo-

ruje princip odděleńı zodpovědnost́ı a umožňuje nezávislou správu auten-

tizačńıch dat.

Implementace Passkeys představovala významnou výzvu, vyžaduj́ıćı pečlivou

integraci s FIDO2 standardem a optimalizaci uživatelského zážitku např́ıč

r̊uznými zař́ızeńımi a prohĺıžeči. Ačkoliv OAuth funkcionalita neńı v současnosti

plně realizována, databázové schéma již obsahuje př́ıpravu pro budoućı inte-

graci této technologie.

Pro detailńı pohled na strukturu databáze a konkrétńı implementačńı

detaily je v kapitole 9 uvedeno kompletńı databázové schéma Autentizačńı

39

mikroservisy.

4.2.6 Uživatelská mikroservisa

Uživatelská mikroservisa zajǐst’uje správu uživatelských profil̊u a vztah̊u mezi

uživateli. Zahrnuje ukládáńı a aktualizaci základńıch informaćı o uživateĺıch,

jako jsou jméno, př́ıjmeńı, e-mail a datum narozeńı. Mikroservisa imple-

mentuje sofistikovaný systém pro správu r̊uzných typ̊u vazeb mezi uživateli,

včetně přátelstv́ı, sledováńı nebo blokováńı.

Data jsou ukládána v dedikované user_db databázi, jej́ıž schéma je op-

timalizováno pro efektivńı dotazováńı komplexńıch vztah̊u mezi uživateli.

Kĺıčovou funkcionalitou je správa uživatelských kruh̊u (circles), umožňuj́ıćı

organizaci kontakt̊u do logických skupin s r̊uznými úrovněmi oprávněńı.

Systém podporuje import a správu osobńıch kontakt̊u včetně mecha-

nismů pro párováńı importovaných kontakt̊u s existuj́ıćımi uživateli plat-

formy. Bezpečnost a soukromı́ jsou zajǐstěny granulárńım systémem oprávněńı,

který umožňuje uživatel̊um přesně kontrolovat př́ıstup k jejich osobńım in-

formaćım. Doplňuje jej robustńı systém pro detekci a prevenci nežádoućıho

chováńı, včetně blokováńı uživatel̊u a reportováńı nevhodného obsahu.

4.2.7 Obsahová mikroservisa

Obsahová mikroservisa zajǐst’uje komplexńı správu obsahu a interakćı uživatel̊u

na platformě. Implementuje robustńı systém pro nahráváńı, ukládáńı a distri-

buci multimediálńıho obsahu, včetně obrázk̊u, vidéı a textových př́ıspěvk̊u.

Ačkoliv funkcionalita pro streamováńı neńı v současné implementaci plně

realizována, architektura je připravena na budoućı integraci této funkce.

Významným aspektem je systém kategorizace obsahu a správy uživatelských

zájmů, umožňuj́ıćı efektivńı organizaci a vyhledáváńı obsahu. Mikroservisa

zahrnuje základńı implementaci obsahových AI profil̊u, které upravuj́ı do-

poručované kategorie a zájmy, což poskytuje základ pro budoućı implemen-

taci pokročileǰśıch algoritmů personalizace.

40

Data jsou ukládána v dedikované content_db databázi. Systém pro správu

interakćı uživatel̊u s obsahem zahrnuje funkce pro hodnoceńı, komentováńı

a sd́ıleńı př́ıspěvk̊u, s d̊urazem na výkon při zpracováńı velkého množstv́ı

současných interakćı.

Architektura je navržena s ohledem na budoućı rozš́ı̌reńı o pokročilé me-

tody moderace obsahu využ́ıvaj́ıćı modely umělé inteligence pro automatic-

kou detekci a filtraci potenciálně škodlivého obsahu. Tato plánovaná inte-

grace významně zvýš́ı efektivitu moderačńıho procesu a pośıĺı bezpečnost

uživatelského prostřed́ı.

4.2.8 Pluginová mikroservisa

Pluginová mikroservisa zajǐst’uje správu plugin̊u, jejich životńıho cyklu a

rozšǐritelnosti platformy. Jádrem je systém pro správu celého procesu od

vytvářeńı přes publikováńı až po distribuci plugin̊u. Architektura implemen-

tuje sofistikované verzováńı, které umožňuje vývojář̊um publikovat aktuali-

zace při zachováńı kompatibility s existuj́ıćımi instalacemi. Systém podporuje

r̊uzné stavy publikace včetně beta verźı, př́ıpravy, recenze a finálńıho publi-

kovaného stavu.

Významnou součást́ı je lokalizačńı systém umožňuj́ıćı přizp̊usobeńı plu-

gin̊u pro r̊uzné jazyky a regiony. Implementace podporuje ukládáńı lokali-

zovaných text̊u ve formátu JSON, což poskytuje flexibilitu při definici kom-

plexńıch lokalizačńıch struktur s validaćı regionálńıch kód̊u.

Data jsou ukládána v dedikované plugin_db s komplexńı strukturou ta-

bulek pro metadata plugin̊u, verźı, instalaćı, lokalizaćı, asset̊u a uživatelských

dat. Databázové schéma využ́ıvá sofistikované indexováńı pro optimalizaci

výkonu dotaz̊u a zajǐstěńı referenčńı integrity.

Systém správy instalaćı sleduje pluginy na úrovni uživatel̊u i zař́ızeńı, což

umožňuje instalaci na r̊uzná zař́ızeńı s mechanismy pro monitoring stavu,

statistiky využit́ı a správu aktualizaćı. Bezpečnostńı aspekty zahrnuj́ı validaci

a verifikaci plugin̊u včetně kontroly integrity a detekce potenciálně škodlivého

kódu s r̊uznými úrovněmi verifikačńıho statusu.

41

Pro ukládáńı a distribuci binárńıch soubor̊u a asset̊u je implementována

integrace s Cloudflare R2 Object Storage, zajǐst’uj́ıćı efektivńı správu WebAs-

sembly modul̊u, ikon a daľśıch souvisej́ıćıch soubor̊u. Součást́ı je také systém

hodnoceńı a recenźı, který umožňuje uživatel̊um poskytovat zpětnou vazbu

vývojář̊um s mechanismy pro prevenci zneužit́ı.

4.3 Mobilńı aplikace

Mobilńı aplikace sociálńı platformy Socigy je implementována s využit́ım

React Native Expo, což umožňuje vývoj multiplatformńı aplikace s nativńım

výkonem. Aplikace zahrnuje kĺıčové funkce sociálńı śıtě, včetně zobrazeńı

př́ıspěvk̊u, správy profil̊u, ř́ızeńı uživatelských kruh̊u, správy vztah̊u a ob-

chodu s pluginy.

Pro optimalizaci výkonu a uživatelského zážitku byly implementovány

pokročilé techniky. Jednou z nich je využit́ı komponenty FlashList, která

představuje optimalizovanou verzi standardńı FlatList komponenty. Flash-

List nab́ıźı vyšš́ı výkon a nižš́ı pamět’ovou náročnost při renderováńı dlouhých

seznamů, což je kĺıčové pro plynulé procházeńı př́ıspěvk̊u a daľśıch datových

sad. Ačkoliv FlashList neńı využit v celé aplikaci, jeho nasazeńı v kritických

částech významně přisṕıvá k celkovému výkonu.

Daľśı významnou optimalizaćı je implementace cachováńı obrázk̊u pomoćı

ExpoImage. Tato komponenta využ́ıvá výkonné nativńı knihovny SDWebI-

mage pro iOS a Glide pro Android, které zajǐst’uj́ı efektivńı nač́ıtáńı a ukládáńı

obrázk̊u do mezipaměti. Dı́ky tomu se výrazně snižuje množstv́ı śıt’ových

požadavk̊u a zrychluje se zobrazeńı již dř́ıve načtených obrázk̊u.

Pro správu stavu aplikace byl zvolen př́ıstup založený na React Con-

texts. Toto řešeńı umožňuje efektivńı sd́ıleńı dat mezi komponentami bez

nutnosti explicitńıho předáváńı props skrze celou komponentovou hierarchii.

Implementace zahrnuje několik kĺıčových kontext̊u, jako jsou AuthContext

pro správu autentizace, ThemeContext pro ř́ızeńı vzhledu aplikace, a daľśı

specializované kontexty pro správu uživatelských dat a nastaveńı.

42

Proces instalace plugin̊u v mobilńı aplikaci je navržen s ohledem na jed-

noduchost a bezpečnost. Uživatel může procházet dostupné pluginy v inte-

grovaném obchodě, vybrat požadovanou verzi a iniciovat instalaci. Samotná

”instalace”spoč́ıvá v registraci uživatele a zař́ızeńı na serveru jako uživatele

daného pluginu, bez nutnosti stahováńı a spouštěńı kódu př́ımo v aplikaci.

Toto řešeńı umožňuje centrálńı správu plugin̊u a jejich oprávněńı.

4.4 Webová aplikace

Webová verze aplikace Socigy je vyvinuta s využit́ım frameworku Next.js,

který poskytuje výkonné nástroje pro server-side rendering a optimalizaci

výkonu. Funkcionalita webové aplikace zahrnuje stejné kĺıčové prvky jako

mobilńı verze, včetně zobrazeńı př́ıspěvk̊u, správy profil̊u, ř́ızeńı uživatelských

kruh̊u a vztah̊u, a obchodu s pluginy.

Pro správu stavu v webové aplikaci byl zvolen stavový manažer Zustand.

Na rozd́ıl od React Contexts použitých v mobilńı aplikaci, Zustand nab́ıźı

jednodušš́ı API a lepš́ı výkonnost při práci s komplexńımi stavy. Zustand

umožňuje vytvářeńı izolovaných úložǐst’ stavu, což usnadňuje testováńı a

údržbu kódu. Tato volba reflektuje specifické potřeby webové aplikace a

odlǐsný př́ıstup k architektuře front-endu ve srovnáńı s mobilńı verźı.

Webová aplikace také zahrnuje specializovanou sekci pro vývojáře plu-

gin̊u. Tato část poskytuje nástroje pro správu plugin̊u, včetně editace me-

tadat, správy verźı, sledováńı log̊u, správy lokalizaćı a assets. Vývojáři maj́ı

také př́ıstup k analytickým dat̊um o svých pluginech, včetně hodnoceńı a

recenźı od uživatel̊u. Součást́ı je i rozhrańı pro správu databáze pluginu s

přehledem o využit́ı limit̊u.

Pro zajǐstěńı responzivńıho designu a konzistentńıho vzhledu např́ıč r̊uznými

zař́ızeńımi je využit framework TailwindCSS. Tento utility-first CSS fra-

mework umožňuje rychlý vývoj responzivńıch rozhrańı a snadnou customizaci

designu.

Ačkoliv současná implementace plugin̊u nezahrnuje jejich př́ımou inte-

43

graci do hlavńı aplikace, je to plánováno pro budoućı iterace. Toto rozhod-

nut́ı bylo motivováno potřebou d̊ukladně otestovat koncept a optimalizovat

architekturu před plnou integraćı. Starš́ı verze implementace, která zahrno-

vala př́ımou integraci plugin̊u, je k dispozici v př́ılohách práce pro srovnáńı

a analýzu. (9, /client/native/app-old-iteration)

Obě verze aplikace, mobilńı i webová, sd́ılej́ı společnou logiku pro kĺıčové

funkce jako je zobrazeńı př́ıspěvk̊u, správa profil̊u a uživatelských vztah̊u.

Tento př́ıstup zajǐst’uje konzistentńı uživatelský zážitek např́ıč platformami

a zjednodušuje údržbu a vývoj nových funkćı.

44

Kapitola 5

Ekosystém uživatelských

plugin̊u

Tato kapitola popisuje návrh a implementaci ekosystému uživatelských plu-

gin̊u, který představuje jeden z kĺıčových inovativńıch prvk̊u navržené sociálńı

platformy. Systém umožňuje rozšǐritelnost platformy prostřednictv́ım mo-

dul̊u třet́ıch stran, přičemž zajǐst’uje bezpečnost, stabilitu a konzistentńı

uživatelskou zkušenost.

5.1 Aplikačńı vrstva

Aplikačńı vrstva pluginového systému poskytuje rozhrańı mezi jádrem plat-

formy a uživatelskými pluginy. Tato vrstva implementuje mechanismy pro

správu životńıho cyklu plugin̊u, komunikaci mezi pluginy a platformou, a

zajǐst’uje bezpečnou exekuci kódu třet́ıch stran.

5.1.1 Verzováńı API

Systém verzováńı API představuje kĺıčový aspekt pluginového ekosystému,

který zajǐst’uje dlouhodobou kompatibilitu a udržitelnost. Implementovaný

př́ıstup umožňuje současný běh plugin̊u kompatibilńıch s r̊uznými verzemi

45

systémového API, což eliminuje nutnost pravidelných aktualizaćı plugin̊u při

změnách v základńı platformě.

Verzováńı je implementováno prostřednictv́ım sémantického verzováńı,

kde pluginy specifikuj́ı požadovanou verzi API ve svém developerském roz-

hrańı v aplikaci

Systém automaticky rozpoznává kompatibilńı verze API a poskytuje plu-

ginu odpov́ıdaj́ıćı rozhrańı. Tento mechanismus je implementován v tř́ıdě

PluginCacheManager, která analyzuje požadovanou verzi API a vyb́ırá nej-

vhodněǰśı implementaci:

1 private fun resolveBestVersion(requestedVersion: String,

availableVersions: List<String>): String? {↪→

2 val baseVersion = if (requestedVersion.startsWith("^")) {

3 requestedVersion.substring(1)

4 } else {

5 requestedVersion

6 }

7

8 val requestedSemver = Semver(baseVersion,

Semver.SemverType.NPM)↪→

9 val rangeStart = requestedSemver

10 val rangeEnd = Semver("${requestedSemver.major + 1}.0.0",

Semver.SemverType.NPM)↪→

11

12 return availableVersions

13 .map { Semver(it, Semver.SemverType.NPM) }

14 .filter { it.compareTo(rangeStart) >= 0 &&

it.compareTo(rangeEnd) < 0 }↪→

15 .maxByOrNull { it }

16 ?.toString()

17 }

Tento př́ıstup zajǐst’uje zpětnou kompatibilitu a umožňuje postupnou evoluci

API bez narušeńı funkčnosti existuj́ıćıch plugin̊u.

46

5.1.2 Registrace a pouštěńı event̊u

Systém událost́ı (events) umožňuje plugin̊um reagovat na akce uživatel̊u a

změny v aplikaci. Implementace zahrnuje mechanismy pro registraci poslu-

chač̊u událost́ı, distribuci událost́ı a jejich zpracováńı v rámci plugin̊u.

Pro usnadněńı práce s událostmi se specializuje část vyvinutého Rust fra-

meworku, který poskytuje vysokoúrovňové abstrakce pro registraci a zpra-

cováńı událost́ı:

1 thread_local! {

2 pub(crate) static REGISTERED_EVENTS: Rc<RefCell<HashMap<String,

Box<dyn FnMut(&UIEvent)>>>> =

Rc::new(RefCell::new(HashMap::new()));

↪→

↪→

3 }

4

5 #[wasm_bindgen]

6 pub fn invoke_ui_event(id: String, event: String) {

7 let json_res = match

serde_json::from_str::<UIEvent>(event.as_str()) {↪→

8 Ok(res) => res,

9 Err(e) => {

10 logging::adv_error(

11 format!("Failed to deserialize UIEvent -> {}",

e).as_str(),↪→

12 None,

13 false,

14);

15 return;

16 }

17 };

18

19 REGISTERED_EVENTS.with(move |events| {

20 if let Some(listener) = events.borrow_mut().get_mut(&id) {

21 listener(&json_res);

47

22 }

23 });

24 }

Tento kód umožňuje registraci posluchač̊u událost́ı a jejich vyvoláńı při in-

terakci uživatele s komponentami pluginu. Události jsou serializovány do

formátu JSON a předávány mezi nativńım kódem a WebAssembly modu-

lem.

Na straně klienta je implementován systém pro distribuci událost́ı mezi

pluginy a jádrem aplikace:

1 const eventNamesArray: string[] = [

2 "onPointerEnter",

3 "onPointerEnterCapture",

4 // Dalšı́ typy událostı́

5];

6 // ... renderVDOM()

7 const { type, events, children, key } = element;

8 if (events) {

9 Object.keys(events).forEach((event) => {

10 if (eventNamesArray.includes(event)) {

11 const eventIds = events[event];

12

13 // Internal event callback

14 const callback = (e: any) => {

15 const eventData = JSON.stringify({

16 type: event,

17 ...e.nativeEvent,

18 });

19 eventIds.forEach((eventId) => {

20 uiRegistry.invokeUiEvent(pluginId, eventId, eventData);

21 });

22 };

23

48

24 // Props passed to the rendered component

25 if (props) {

26 props[event] = callback;

27 } else {

28 props = { [event]: callback };

29 }

30 }

31 });

32 }

Tento př́ıstup umožňuje plugin̊um reagovat na události uživatelského roz-

hrańı, jako jsou kliknut́ı, změny rozměr̊u nebo jiné interakce, což poskytuje

bohaté možnosti pro implementaci interaktivńıch komponent.

5.1.3 Dynamické uživatelské rozhrańı

Dynamické uživatelské rozhrańı představuje kĺıčovou funkcionalitu plugi-

nového systému, která umožňuje plugin̊um definovat a vykreslovat vlastńı

komponenty v rámci aplikace. Implementace je založena na konceptu virtuálńıho

DOM (VDOM), který umožňuje efektivńı aktualizace uživatelského rozhrańı.

Vyvinutý Rust framework poskytuje JSX-podobnou syntaxi pro definici

uživatelského rozhrańı:

1 #[ui_component]

2 struct Page {

3 render_string: bool,

4 content: Option<PropStr>,

5 image_url: Option<PropStr>,

6 }

7

8 impl UIComponent for Page {

9 fn render(&mut self) -> Option<UIElement> {

10 ui! {

11 <View class_name="flex-1 flex b" on_layout={|e| {

49

12 info!("OnLayout event was fired on Page. Event:

{:?}", e);↪→

13 }}>

14 <Text class_name="text-2xl font-inter-bold

text-foreground">Your watchlist</Text>↪→

15 <Counter render_string={self.render_string}

image_url={self.image_url.clone().unwrap()}

content={self.content.clone().unwrap()} />

↪→

↪→

16 </View>

17 }

18 }

19 }

Tento kód definuje komponentu s vlastnostmi a metodou pro vykresleńı,

která využ́ıvá vlastně vyvinuté makro ui! pro definici struktury uživatelského

rozhrańı. Framework automaticky převád́ı tuto definici na virtuálńı DOM re-

prezentaci, která je následně serializována a předána do nativńı aplikace.

Na straně klienta je implementován systém pro vykreslováńı komponent

definovaných pluginy:

1 export default function Dynamic({

2 id,

3 defaultElement,

4 props,

5 uiRegistry,

6 }: DynamicProps) {

7 const [vdom, dispatchChange] = useReducer(dynamicVdomReducer,

undefined);↪→

8

9 useEffect(() => {

10 const registeredPlugin = uiRegistry.getComponentPlugin(id);

11 if (!registeredPlugin) {

12 return;

13 }

50

14

15 const changeSubscription = SocigyWasm.addListener(

16 "onComponentChange",

17 (data) => {

18 if (!data.changes) return;

19 const changes: VDOMChange[] = JSON.parse(data.changes);

20 dispatchChange(changes);

21 }

22);

23

24 if (

25 !SocigyWasm.renderComponent(registeredPlugin, id,

JSON.stringify(props))↪→

26) {

27 console.error(`Failed to render dynamic component ${id}`);

28 }

29 return () => {

30 changeSubscription.remove();

31 };

32 }, [id]);

33

34 if (!vdom) {

35 return defaultElement;

36 }

37 return renderVDOM(vdom);

38 }

Tento kód zajǐst’uje vykresleńı komponenty definované pluginem a jej́ı aktu-

alizaci při změnách. Systém využ́ıvá virtuálńı DOM pro optimalizaci výkonu

a minimalizaci počtu aktualizaćı reálného DOM.

51

5.2 Pluginová vrstva

Pluginová vrstva zajǐst’uje bezpečné spouštěńı kódu třet́ıch stran a poskytuje

rozhrańı pro interakci s jádrem aplikace. Tato vrstva je implementována s

využit́ım WebAssembly, což umožňuje efektivńı a bezpečné prováděńı kódu

v sandboxovaném prostřed́ı.

5.2.1 Sandoxing u nativńıch zař́ızeńı

Implementace sandboxingu na nativńıch zař́ızeńıch představuje významnou

technickou výzvu, zejména na mobilńıch platformách. Pro řešeńı tohoto problému

byl vyvinut specializovaný nativńı modul pro Android, který umožňuje bezpečné

spouštěńı WebAssembly kódu v izolovaném prostřed́ı.

Modul SocigyWasm implementuje rozhrańı mezi nativńım kódem aWebAs-

sembly moduly:

1 class SocigyWasmModule : Module() {

2 private final var PluginCacheManager: PluginCacheManager? = null;

3

4 override fun definition() = ModuleDefinition {

5 Name("SocigyWasm")

6

7 OnCreate() {

8 SocigyWasmExceptions.setSendEvent(::sendEventWrapper);

9 try {

10 PluginCacheManager = PluginCacheManager(getContext(),

::sendEventWrapper);↪→

11 } catch (e: Exception) {

12 sendEvent("onFatal", bundleOf(

13 "message" to "FATAL_ERR - " + e.toString(),

14 "uiDelay" to 0

15));

16 }

17 }

52

18

19 // Definice API pro komunikaci s React Native

20 // ...

21 }

22 }

Tento modul poskytuje rozhrańı pro nač́ıtáńı, inicializaci a spouštěńı

WebAssembly modul̊u v rámci React Native aplikace. Implementace využ́ıvá

WebView jako runtime proWebAssembly, což zajǐst’uje kompatibilitu s většinou

Android zař́ızeńı.

Kĺıčovým aspektem implementace je izolace kódu plugin̊u, která je zajǐstěna

prostřednictv́ımWebAssembly sandboxu. WebAssembly poskytuje bezpečnostńı

model založený na lineárńı paměti a omezeném př́ıstupu k hostitelskému

prostřed́ı, což efektivně bráńı neoprávněnému př́ıstupu k systémovým zdroj̊um.

Př́ıstup k funkcionalitám platformy je ř́ızen prostřednictv́ım explicitně

exportovaných funkćı, které jsou dostupné plugin̊um:

1 WebView!!.addJavascriptInterface(ISocigyLogging(sendEvent),

"SocigyLogging");↪→

2 WebView!!.addJavascriptInterface(ISocigyInternal(sendEvent),

"SocigyInternal");↪→

3 WebView!!.addJavascriptInterface(ISocigyUtils(sendEvent),

"SocigyUtils");↪→

4 WebView!!.addJavascriptInterface(ISocigyPermissions(sendEvent),

"SocigyPermissions");↪→

5 WebView!!.addJavascriptInterface(ISocigyUI(sendEvent), "SocigyUI");

Tento př́ıstup umožňuje přesnou kontrolu nad t́ım, k jakým funkciona-

litám maj́ı pluginy př́ıstup, a implementaci systému oprávněńı, který umožňuje

uživatel̊um kontrolovat, jaké akce mohou pluginy provádět.

53

5.3 UI

Uživatelské rozhrańı pluginového systému poskytuje mechanismy pro defi-

nici, registraci a vykreslováńı komponent definovaných pluginy. Tato část

systému zajǐst’uje integraci plugin̊u do uživatelského rozhrańı aplikace a po-

skytuje konzistentńı uživatelskou zkušenost.

5.3.1 Definice komponent̊u a jejich registrace

Systém pro definici a registraci komponent umožňuje plugin̊um vytvářet

vlastńı uživatelské rozhrańı, které je integrováno do aplikace. Implementace

zahrnuje mechanismy pro definici komponent, jejich registraci v rámci apli-

kace a správu jejich životńıho cyklu.

Definice komponent v rámci plugin̊u je realizována prostřednictv́ım vy-

vinutého Rust frameworku, který poskytuje vysokoúrovňové abstrakce pro

tvorbu uživatelského rozhrańı:

1 #[ui_component]

2 struct Counter {

3 render_string: bool,

4 content: PropStr,

5 image_url: PropStr,

6 }

7

8 impl UIComponent for Counter {

9 fn render(&mut self) -> Option<UIElement> {

10 ui! {

11 <View class_name="flex-1 flex-row items-center

justify-center">↪→

12 <Text>{self.content.to_string()}</Text>

13 <Image source={{ uri: self.image_url.to_string() }}

style={{ width: 100, height: 100 }} />↪→

14 </View>

15 }

54

16 }

17 }

Tento kód definuje komponentu s vlastnostmi a metodou pro vykresleńı,

která využ́ıvá makro ui! pro definici struktury uživatelského rozhrańı. Kom-

ponenta je následně registrována v rámci aplikace:

1 let component_id = "2368bb7a-1021-49d1-85f3-7049fb15abed";

2 register_component::<MyComponent>(&component_id);

Na straně klienta je implementován systém pro registraci a správu kom-

ponent:

1 private internal_registerComponent(data: ComponentBasicEventData) {

2 this.components.set(data.componentId, data.pluginId);

3 let registered = this.plugins.get(data.pluginId);

4 if (!registered) this.plugins.set(data.pluginId,

[data.componentId]);↪→

5 else {

6 registered.push(data.componentId);

7 this.plugins.set(data.pluginId, registered);

8 }

9 }

Tento kód zajǐst’uje registraci komponenty v rámci aplikace a jej́ı asociaci s

př́ıslušným pluginem. Registrované komponenty jsou následně dostupné pro

vykresleńı v rámci aplikace.

5.3.2 Renderováńı komponent̊u

Systém pro vykreslováńı komponent zajǐst’uje efektivńı vykresleńı uživatelského

rozhrańı definovaného pluginy. Implementace je založena na konceptu virtuálńıho

DOM, který umožňuje efektivńı aktualizace uživatelského rozhrańı.

Vykreslováńı komponent je realizováno prostřednictv́ım specializovaného

rendereru, který převád́ı virtuálńı DOM reprezentaci na nativńı komponenty:

55

1 function renderVDOM(

2 element: UIElement | undefined,

3 uiRegistry: UIRegistry,

4 pluginId: string

5): React.JSX.Element | undefined {

6 if (!element) return undefined;

7 else if (typeof element === "string") return

<Text>{element}</Text>;↪→

8

9 const { type, events, children, key } = element;

10 let props = { ...element.props };

11

12 const Component = getElementByType(type);

13 const renderedChildren = children?.map((x) =>

14 renderVDOM(x, uiRegistry, pluginId)

15);

16

17 if (type == "Fragment") {

18 return <Component children={renderedChildren} />;

19 }

20

21 if (events) {

22 // Events...

23 }

24

25 if (type == "External") {

26 return (

27 <Component

28 key={element.key}

29 {...props}

30 children={renderedChildren}

31 uiRegistry={uiRegistry}

32 />

56

33);

34 }

35

36 return (

37 <Component key={key} {...props} children={renderedChildren} />

38);

39 }

Tento kód převád́ı virtuálńı DOM reprezentaci na nativńı React kompo-

nenty, které jsou následně vykresleny v rámci aplikace. Systém podporuje

hierarchické komponenty, vlastnosti a události, což umožňuje vytvářeńı kom-

plexńıho uživatelského rozhrańı.

Optimalizace

Pro zajǐstěńı optimálńıho výkonu při vykreslováńı komponent definovaných

pluginy byly implementovány r̊uzné optimalizačńı techniky. Kĺıčovou opti-

malizaćı je využit́ı virtuálńıho DOM, který umožňuje minimalizovat počet

aktualizaćı reálného DOM.

1 function dynamicVdomReducer(

2 state: UIElement | undefined,

3 actions: VDOMChange[]

4): UIElement | undefined {

5 return produce(state, (draft) => {

6 if (typeof draft === "string") return;

7 else if (!draft) return actions[0].element;

8

9 actions.forEach((action) => {

10 switch (action.type) {

11 case "addElement": {

12 // ...

13 }

14 case "replaceElement": {

15 // ...

57

16 }

17 // Dalšı́ typy změn

18 }

19 });

20

21 return draft;

22 });

23 }

24

Tento kód implementuje reducer pro aplikaci změn na virtuálńı DOM. Systém

podporuje r̊uzné typy změn, jako je přidáńı, odstraněńı nebo aktualizace ele-

ment̊u, což umožňuje efektivńı aktualizace uživatelského rozhrańı bez nut-

nosti překresleńı celého stromu.

Daľśı optimalizaćı je využit́ı WebAssembly pro výkonné zpracováńı dat

a logiky na straně plugin̊u. WebAssembly poskytuje výkon bĺızký nativńımu

kódu, což umožňuje efektivńı implementaci komplexńıch algoritmů a zpra-

cováńı dat v rámci plugin̊u.

58

Kapitola 6

Monitoring a benchmarking

6.1 Monitorováńı a logováńı

Efektivńı monitorováńı a logováńı představuje kĺıčový aspekt správy kom-

plexńı mikroservisńı architektury sociálńı platformy Socigy. Pro zajǐstěńı ro-

bustńıho dohledu nad systémem byla implementována specializovaná moni-

torovaćı infrastruktura založená na moderńıch open-source nástroj́ıch.

Jádrem monitorovaćıho systému je stack složený z Grafany, Promethea

a Loki, který běž́ı v dedikovaném namespace v rámci Kubernetes clusteru,

avšak mimo Consul Service Mesh. Toto architektonické rozhodnut́ı zajǐst’uje

nezávislost monitorovaćıch komponent na monitorovaném prostřed́ı, což eli-

minuje potenciálńı kaskádové selháńı v př́ıpadě problémů s Service Mesh.

Prometheus slouž́ı jako primárńı nástroj pro sběr a ukládáńı metrických

dat z r̊uzných komponent systému. V implementovaném řešeńı Prometheus

dynamicky objevuje monitorované ćıle prostřednictv́ım Kubernetes API, což

umožňuje automatické přidáváńı nových instanćı mikroslužeb do monitoro-

vaćıho systému bez nutnosti manuálńı konfigurace. Pro každou mikroslužbu

jsou exponovány standardizované metriky zahrnuj́ıćı využit́ı CPU, paměti,

latenci požadavk̊u a počet zpracovaných transakćı.

Loki doplňuje monitorovaćı infrastrukturu jako škálovatelný systém pro

agregaci a analýzu log̊u. Na rozd́ıl od tradičńıch řešeńı pro správu log̊u, Loki

59

neindexuje obsah log̊u, ale pouze metadata, což významně snižuje nároky na

úložǐstě a výpočetńı zdroje. Implementace zahrnuje standardizovaný formát

log̊u např́ıč všemi mikroslužbami, což usnadňuje jejich analýzu a korelaci.

Logy jsou strukturovány v JSON formátu a obsahuj́ı kontextové informace

jako ID požadavku, ID uživatele a daľśı relevantńı metadata, což umožňuje

efektivńı trasováńı požadavk̊u např́ıč distribuovaným systémem.

Grafana slouž́ı jako centrálńı vizualizačńı platforma, která integruje data

z Promethea a Loki do přehledných dashboard̊u. Tento př́ıstup umožňuje

komplexńı pohled na výkon a zdrav́ı celého mikroservisńıho ekosystému.

Pro monitorováńı Kubernetes clusteru jsou využ́ıvány specializované ex-

portery, které poskytuj́ı detailńı pohled na stav jednotlivých uzl̊u, pod̊u a

daľśıch Kubernetes objekt̊u. Tyto metriky jsou integrovány do centrálńıho

monitorovaćıho systému, což umožňuje korelaci problémů na úrovni aplikace

s potenciálńımi problémy na úrovni infrastruktury.

Consul Service Mesh poskytuje dodatečnou vrstvu monitorovaćıch dat

prostřednictv́ım integrovaných metrik o komunikaci mezi službami. Tyto me-

triky zahrnuj́ı latenci, propustnost a chybovost jednotlivých voláńı mezi mik-

roslužbami, což umožňuje identifikaci úzkých hrdel a problematických služeb

v rámci distribuovaného systému.

6.2 Benchmarking

Benchmarking představuje kritickou součást vývojového procesu sociálńı plat-

formy Socigy, zejména v kontextu pluginového systému, který muśı efektivně

zpracovávat dynamické uživatelské rozhrańı a interakce. V rámci vývoje byly

provedeny rozsáhlé výkonnostńı testy zaměřené na optimalizaci kĺıčových

komponent systému.

Významným aspektem benchmarkingu byla evaluace r̊uzných implementačńıch

př́ıstup̊u pro pluginový systém. Původńı implementace založená na Assem-

blyScript dosahovala v zátěžových testech výkonu přibližně 16 000 sńımk̊u za

sekundu (fps). Tato metrika reprezentuje rychlost, s jakou je systém schopen

60

generovat aktualizace virtuálńıho DOM a připravovat JSON reprezentace

pro vykresleńı uživatelského rozhrańı, bez započ́ıtáńı času potřebného pro

skutečné vykresleńı na obrazovku.

Následná reimplementace pluginového systému v jazyce Rust přinesla

dramatické zlepšeńı výkonu, dosahuj́ıćı až 200 000 fps ve stejných testo-

vaćıch podmı́nkách. Toto v́ıce než dvanáctinásobné zvýšeńı výkonu lze přič́ıst

několika faktor̊um:

• Efektivněǰśı správa paměti v Rustu ve srovnáńı s AssemblyScriptem

• Optimalizovaná implementace virtuálńıho DOM s minimálńımi režijńımi

náklady

• Efektivněǰśı serializace a deserializace JSON struktur

• Vylepšený algoritmus pro detekci změn a minimalizaci aktualizaćı

Benchmarking zahrnoval také měřeńı latence při zpracováńı uživatelských

interakćı, jako jsou kliknut́ı, změny rozměr̊u nebo jiné události. Rust imple-

mentace dosáhla pr̊uměrné latence pod 5 ms, což je hluboko pod prahem 100

ms, který je považován za hranici pro vńımáńı okamžité reakce uživatelského

rozhrańı.

Kromě výkonnostńıch test̊u pluginového systému byly provedeny také

zátěžové testy mikroservisńı architektury jako celku. Tyto testy simulovaly

vysoké zat́ıžeńı s tiśıci současných uživatel̊u a měřily schopnost systému

škálovat a udržet konzistentńı výkon. Výsledky ukázaly, že implementovaná

architektura je schopna efektivně škálovat horizontálně a udržet stabilńı la-

tenci i při vysokém zat́ıžeńı.

Benchmarking odhalil několik potenciálńıch úzkých hrdel v systému, předevš́ım

v oblasti databázových operaćı a mezislužbové komunikace. Na základě těchto

zjǐstěńı byla implementována řada optimalizaćı. Kĺıčovým vylepšeńım bylo

zavedeńı pokročilého connection poolingu pro databázové operace, což výrazně

sńıžilo latenci a zvýšilo propustnost systému. Daľśı plánovanou optimalizaćı

je implementace distribuovaného cachováńı často přistupovaných dat pomoćı

61

Redis. Toto řešeńı má potenciál významně redukovat zátěž na primárńı da-

tabázi a zrychlit odezvu systému. Ačkoliv z časových d̊uvod̊u nebylo Redis

cachováńı dosud plně implementováno, předběžné analýzy naznačuj́ı, že by

mohlo přinést až 30% zlepšeńı v rychlosti odezvy pro nejčastěji požadovaná

data.

Výsledky benchmarkingu potvrzuj́ı, že zvolený technologický stack a im-

plementačńı př́ıstupy poskytuj́ı solidńı základ pro výkonnou a škálovatelnou

sociálńı platformu. Zejména přechod na Rust pro implementaci kritických

komponent pluginového systému se ukázal jako kĺıčové rozhodnut́ı pro dosažeńı

vynikaj́ıćıho výkonu při zpracováńı dynamického uživatelského rozhrańı.

62

Kapitola 7

Diskuze a vyhodnoceńı

výsledk̊u

V této kapitole se zaměř́ım na zhodnoceńı dosažených výsledk̊u, porovnáńı

implementovaného řešeńı s existuj́ıćımi alternativami a identifikaci omezeńı

současné implementace spolu s návrhy na budoućı rozvoj.

7.1 Hodnoceńı dosažených výsledk̊u

Implementace sociálńı platformy Socigy představuje komplexńı technologické

řešeńı, které úspěšně adresuje řadu identifikovaných nedostatk̊u existuj́ıćıch

sociálńıch śıt́ı. Při hodnoceńı dosažených výsledk̊u je třeba zohlednit několik

aspekt̊u.

Z hlediska frontend implementace bylo dosaženo funkčńıho uživatelského

rozhrańı, které demonstruje základńı koncept platformy. Využit́ı React Na-

tive Expo pro mobilńı aplikaci a Next.js pro webovou aplikaci umožnilo vy-

tvořit multiplatformńı řešeńı s konzistentńı uživatelskou zkušenost́ı. Ačkoliv

současná implementace UI/UX nedosahuje všech p̊uvodně zamýšlených ćıl̊u,

jako je např́ıklad podpora dokovaćıch tab̊u a plnohodnotný multitasking na

webové platformě, poskytuje solidńı základ pro daľśı rozvoj.

Mikroservisńı architektura implementovaná na platformě Kubernetes prokázala

63

svou efektivitu při řešeńı problémů škálovatelnosti a modularity. Implemen-

tace zahrnuje čtyři kĺıčové mikroslužby (Auth, User, Content, Plugin), které

společně poskytuj́ı robustńı základ pro funkcionalitu sociálńı platformy. Současná

implementace je omezena na jeden Kubernetes cluster, což limituje možnosti

geografické distribuce, nicméně architektura je navržena s ohledem na bu-

doućı rozš́ı̌reńı do multi-cluster prostřed́ı.

Významným úspěchem je implementace pluginového systému založeného

na WebAssembly, který umožňuje bezpečné spouštěńı kódu třet́ıch stran v

sandboxovaném prostřed́ı. Ačkoliv integrace plugin̊u do hlavńı aplikace ne-

byla z časových d̊uvod̊u dokončena, byla vytvořena kompletńı infrastruktura

pro vývoj, distribuci a správu plugin̊u, včetně vlastńıho Rust frameworku

pro vývoj plugin̊u s podporou JSX-podobné syntaxe.

Z bezpečnostńıho hlediska bylo dosaženo významného pokroku imple-

mentaćı moderńıch autentizačńıch mechanismů, včetně podpory Passkeys

(FIDO2) a v́ıcefaktorové autentizace. Implementace mTLS v rámci Service

Mesh zajǐst’uje zabezpečenou komunikaci mezi mikroslužbami. Plánovaná in-

tegrace HashiCorp Vault pro správu tajemstv́ı a šifrovaćıch kĺıč̊u nebyla z

časových d̊uvod̊u plně realizována, ačkoliv infrastruktura pro jeho nasazeńı

byla připravena.

Monitoring a observabilita systému byly zajǐstěny implementaćı stacku

Grafana, Loki a Prometheus, který poskytuje komplexńı nástroje pro sle-

dováńı výkonu a detekci anomálíı. Tato infrastruktura je kĺıčová pro zajǐstěńı

spolehlivého provozu a proaktivńı identifikaci potenciálńıch problémů.

7.2 Porovnáńı s existuj́ıćımi řešeńımi

Při porovnáńı implementovaného řešeńı s existuj́ıćımi sociálńımi platformami

je patrných několik významných rozd́ıl̊u a inovaćı.

Z technologického hlediska se Socigy odlǐsuje od existuj́ıćıch platforem im-

plementaćı moderńıch autentizačńıch mechanismů. Zat́ımco platformy jako

Instagram a Facebook stále spoléhaj́ı primárně na tradičńı hesla doplněná

64

dvoufaktorovou autentizaćı, Socigy implementuje podporu Passkeys založených

na standardu FIDO2, což poskytuje vyšš́ı úroveň zabezpečeńı při současném

zjednodušeńı procesu přihlašováńı.

Významnou inovaćı oproti existuj́ıćım řešeńım je implementace zař́ızeńım

orientované autentizace, která poskytuje uživatel̊um větš́ı kontrolu nad př́ıstupem

k jejich účt̊um. Tento př́ıstup umožňuje uživatel̊um spravovat svá auten-

tizovaná zař́ızeńı a v př́ıpadě potřeby okamžitě odebrat př́ıstupová práva

konkrétńımu zař́ızeńı bez nutnosti měnit přihlašovaćı údaje pro všechna ostatńı

zař́ızeńı.

Z hlediska uživatelského rozhrańı současná implementace Socigy zaostává

za vysoce optimalizovanými rozhrańımi dominantńıch platforem, které inves-

tovaly značné prostředky do vývoje a testováńı UI/UX. Nicméně, koncept

podpory dockovaćıch tab̊u a multitaskingu na webové platformě představuje

potenciálńı výhodu oproti existuj́ıćım řešeńım, která tyto funkce typicky ne-

podporuj́ı.

7.3 Omezeńı implementace a návrhy na bu-

doućı rozvoj

Současná implementace sociálńı platformy Socigy má několik omezeńı, která

představuj́ı př́ıležitosti pro budoućı rozvoj.

Jedńım z hlavńıch omezeńı je absence plné integrace plugin̊u do hlavńı

aplikace. Ačkoliv byla vytvořena kompletńı infrastruktura pro vývoj a dis-

tribuci plugin̊u, jejich integrace do uživatelského rozhrańı nebyla z časových

d̊uvod̊u dokončena. Budoućı vývoj by se měl zaměřit na dokončeńı této in-

tegrace, což by umožnilo uživatel̊um plně využ́ıvat potenciál pluginového

systému.

Z bezpečnostńıho hlediska představuje významné omezeńı neúplná imple-

mentace HashiCorp Vault pro správu tajemstv́ı a šifrovaćıch kĺıč̊u. Ačkoliv

infrastruktura pro nasazeńı Vaultu byla připravena, jeho plná integrace s

ostatńımi komponentami systému nebyla dokončena. Budoućı vývoj by se

65

měl zaměřit na dokončeńı této integrace, což by poskytlo robustńı řešeńı pro

správu citlivých informaćı.

Pro optimalizaci výkonu by bylo vhodné implementovat distribuované ca-

chováńı s využit́ım Redis, což by mohlo významně sńıžit latenci a zvýšit pro-

pustnost systému. Tato optimalizace by byla zvláště př́ınosná při škálováńı

platformy na větš́ı počet uživatel̊u.

Daľśım směrem budoućıho rozvoje by mohla být implementace pokročilých

algoritmů pro personalizaci obsahu, které by poskytovaly uživatel̊um rele-

vantněǰśı obsah při zachováńı transparentnosti a kontroly. Toto by mohlo

zahrnovat implementaci systému pro moderaci obsahu s využit́ım model̊u

umělé inteligence, což by zvýšilo bezpečnost platformy a kvalitu uživatelského

prostřed́ı.

Z hlediska rozšǐritelnosti pluginového systému by bylo vhodné implemen-

tovat pokročileǰśı mechanismy pro správu oprávněńı a monitorováńı výkonu

plugin̊u. Toto by mohlo zahrnovat implementaci systému pro dynamické

přidělováńı zdroj̊u plugin̊um na základě jejich využit́ı a implementaci po-

kročilých metrik pro sledováńı výkonu a stability plugin̊u.

Implementace těchto vylepšeńı by významně zvýšila konkurenceschopnost

platformy Socigy a poskytla by uživatel̊um inovativńı a bezpečné prostřed́ı

pro sociálńı interakce v digitálńım prostoru.

66

Kapitola 8

Závěr

8.1 Shrnut́ı kĺıčových poznatk̊u

Tato práce představila návrh a implementaci moderńı sociálńı platformy So-

cigy, která řeš́ı identifikované nedostatky existuj́ıćıch řešeńı prostřednictv́ım

inovativńıho př́ıstupu k architektuře, bezpečnosti a rozšǐritelnosti. Dosažené

výsledky demonstruj́ı potenciál zvolených technologických řešeńı pro vytvořeńı

robustńı a uživatelsky orientované sociálńı śıtě.

Implementace mikroservisńı architektury na platformě Kubernetes se ukázala

jako vhodná volba pro zajǐstěńı škálovatelnosti a modularity systému. Ku-

bernetes poskytl robustńı základ pro orchestraci kontejnerizovaných aplikaćı,

což umožnilo efektivńı správu, škálováńı a nasazeńı jednotlivých mikroslužeb.

Využit́ı Service Mesh pomoćı HashiCorp Consul přineslo významné výhody

v oblasti zabezpečené komunikace mezi službami a centralizované správy

śıt’ových politik.

V oblasti frontendu bylo dosaženo významného pokroku implementaćı

multiplatformńıho řešeńı s využit́ım React Native Expo pro mobilńı aplikace

a Next.js pro webovou aplikaci. Tento př́ıstup zajistil konzistentńı uživatelskou

zkušenost např́ıč r̊uznými zař́ızeńımi a platformami, přičemž umožnil efek-

tivńı sd́ıleńı kódu mezi jednotlivými implementacemi.

Nejvýznamněǰśım př́ınosem práce je implementace pluginového systému

67

založeného naWebAssembly, který umožňuje bezpečné spouštěńı kódu třet́ıch

stran v sandboxovaném prostřed́ı. Vyvinutý Rust framework pro tvorbu plu-

gin̊u s podporou JSX-podobné syntaxe výrazně zjednodušuje vývoj rozš́ı̌reńı

a poskytuje vývojář̊um intuitivńı nástroje pro tvorbu uživatelského rozhrańı.

Benchmarking prokázal vynikaj́ıćı výkon Rust implementace, která dosahuje

až 200 000 fps při zpracováńı virtuálńıho DOM, což představuje v́ıce než

dvanáctinásobné zlepšeńı oproti p̊uvodńı AssemblyScript implementaci.

Z bezpečnostńıho hlediska bylo dosaženo významného pokroku imple-

mentaćı moderńıch autentizačńıch mechanismů, včetně podpory Passkeys

(FIDO2) a v́ıcefaktorové autentizace. Tento př́ıstup eliminuje rizika spo-

jená s tradičńımi hesly a poskytuje uživatel̊um vyšš́ı úroveň zabezpečeńı při

současném zjednodušeńı procesu přihlašováńı.

8.2 Doporučeńı pro budoućı výzkum a praxi

Na základě zkušenost́ı źıskaných během vývoje platformy Socigy lze formu-

lovat několik doporučeńı pro budoućı výzkum a praxi v oblasti moderńıch

sociálńıch śıt́ı.

Prioritou pro daľśı vývoj by měla být plná integrace pluginového systému

do hlavńı aplikace, což by umožnilo uživatel̊um plně využ́ıvat potenciál rozšǐritelnosti

platformy. Současně by bylo vhodné implementovat pokročileǰśı mechanismy

pro správu oprávněńı a monitorováńı výkonu plugin̊u, včetně systému pro

dynamické přidělováńı zdroj̊u na základě jejich využit́ı.

Významnou oblast́ı pro budoućı výzkum je implementace multi-cluster

řešeńı s využit́ım Mesh Gateway, které by umožnilo transparentńı komunikaci

mezi službami nasazenými v r̊uzných clusterech a regionech. Tento př́ıstup by

významně zvýšil dostupnost a odolnost systému v̊uči výpadk̊um jednotlivých

datových center.

Z hlediska uživatelského rozhrańı existuje prostor pro implementaci po-

kročilých funkćı jako jsou dockovaćı taby a multitasking na webové platformě,

což by poskytlo unikátńı uživatelskou zkušenost odlǐsuj́ıćı se od existuj́ıćıch

68

řešeńı.

Pro optimalizaci výkonu by bylo vhodné implementovat distribuované ca-

chováńı s využit́ım Redis, což by mohlo významně sńıžit latenci a zvýšit pro-

pustnost systému. Tato optimalizace by byla zvláště př́ınosná při škálováńı

platformy na větš́ı počet uživatel̊u.

Daľśı směr výzkumu by se měl zaměřit na inovativńı př́ıstupy k sociálńım

interakćım, zejména na koncept uživatelských kruh̊u (circles), který posky-

tuje flexibilněǰśı a granulárńı kontrolu nad sd́ıleńım obsahu a soukromı́m.

Tento př́ıstup by mohl být dále rozvinut implementaćı algoritmů pro au-

tomatické doporučováńı relevantńıch kruh̊u na základě vzorc̊u interakćı a

zájmů uživatel̊u.

V oblasti bezpečnosti by bylo vhodné dokončit integraci HashiCorp Vault

pro správu tajemstv́ı a šifrovaćıch kĺıč̊u, což by poskytlo robustńı řešeńı pro

správu citlivých informaćı. Současně by měl být vyvinut pokročileǰśı systém

pro detekci a prevenci neoprávněného př́ıstupu, včetně implementace beha-

viorálńı analýzy pro identifikaci potenciálně podezřelých aktivit.

Implementace těchto doporučeńı by významně zvýšila konkurenceschop-

nost platformy Socigy a poskytla by uživatel̊um inovativńı a bezpečné prostřed́ı

pro sociálńı interakce v digitálńım prostoru.

69

Kapitola 9

Př́ılohy

Veškeré př́ılohy a dodatečné materiály můžete naj́ıt v následuj́ıćım GitHub

repozitáři ve složce /schemas

70

https://github.com/WailedParsley36/socigy-soc
https://github.com/WailedParsley36/socigy-soc

Slovńık

Cluster Seskupeńı uzl̊u (nodes) v Kubernetes, které společně provozuj́ı kon-

tejnerizované aplikace a zajǐst’uj́ı jejich škálováńı, správu a dostupnost.

17

ConfigMap Objekt v Kubernetes umožňuj́ıćı ukládáńı konfiguračńıch dat

odděleně od kontejnerových aplikaćı. 17

Docker Swarm Alternativńı orchestrátor kontejner̊u od Dockeru, nab́ızej́ıćı

jednodušš́ı, ale méně škálovatelnou správu oproti Kubernetes. 18

Ingress Objekt v Kubernetes, který umožňuje směrováńı HTTP a HTTPS

provozu k službám v clusteru na základě pravidel. 17

IW Informational Warfare. 11

Kubernetes Platforma pro orchestraci kontejnerizovaných aplikaćı, umožňuj́ıćı

efektivńı škálováńı, automatizovanou správu a nasazeńı mikroservis. 17

Mikroservisy Architektonický styl, ve kterém je aplikace rozdělena na menš́ı,

nezávislé služby komunikuj́ıćı mezi sebou. 18

NetworkPolicy Mechanismus v Kubernetes pro definici pravidel śıt’ové ko-

munikace mezi jednotlivými komponentami clusteru. 17

Orchestrace Automatizovaná správa nasazováńı, škálováńı a provozu kon-

tejnerizovaných aplikaćı. 17

71

Passkeys Jsou jednodušš́ı a bezpečněǰśı alternativou k hesl̊um. Umožňuj́ı

vám přihlásit se pouhým otiskem prstu, skenem obličeje nebo zámkem

obrazovky. 12, 13

Secret Bezpečný zp̊usob správy citlivých informaćı, jako jsou hesla, OAuth

tokeny nebo SSH kĺıče, v Kubernetes. 17

YouTube Sociálńı platforma na sd́ıleńı online video obsahu, vlastněná společnost́ı

Google. 11, 72

YouTube Kids Oddělená platforma od YouTube, určená pro děti s velice

základńı ochranou proti nevhodnému obsahu. 12

72

Literatura

1. KEPIOS. Global Social Media Statistics [https://datareportal.com/

social-media-users]. DataReportal, 2025. Datum citováńı: 21. Února

2025.

2. POWELL, Nicole. Social Media Algorithms: How to Crack the Code

in 2025 [https : / / www . halconmarketing . com / post / cracking -

social-media-algorithms-in-2025]. Halcon, 2024. Datum citováńı:

15. Ledna 2025.

3. NGUYEN, Tien T.; HUI, Pik-Mai; HARPER, F. Maxwell; TERVEEN,

Loren; KONSTAN, Joseph A. Exploring the Filter Bubble: The Ef-

fect of Using Recommender Systems on Content Diversity [https://

archives.iw3c2.org/www2014/proceedings/proceedings/p677.

pdf]. ACM Press, 2014. Datum citováńı: 15. Ledna 2025.

4. TADDEO, Mariarosaria. Information Warfare: A Philosophical Per-

spective [https://www.researchgate.net/publication/234627039_

Information_Warfare_A_Philosophical_Perspective]. University

of Oxford, 2021. Datum citováńı: 15. Ledna 2025.

5. MARTIN, Maddie. How Much Money Do You Get Per View on You-

Tube? (2025 Stats) [https://www.thinkific.com/blog/youtube-

money-per-view]. Thinkific, 2024. Datum citováńı: 15. Ledna 2025.

6. ALLIANCE, FIDO. What is FIDO2? [https://fidoalliance.org/

fido2/]. FIDO Alliance, [b.r.]. Datum citováńı: 15. Ledna 2025.

73

https://datareportal.com/social-media-users
https://datareportal.com/social-media-users
https://www.halconmarketing.com/post/cracking-social-media-algorithms-in-2025
https://www.halconmarketing.com/post/cracking-social-media-algorithms-in-2025
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://www.researchgate.net/publication/234627039_Information_Warfare_A_Philosophical_Perspective
https://www.researchgate.net/publication/234627039_Information_Warfare_A_Philosophical_Perspective
https://www.thinkific.com/blog/youtube-money-per-view
https://www.thinkific.com/blog/youtube-money-per-view
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/

7. JAIN, Ayushi. Decoding Instagram System Design & Architecture (And

How Reels Recommendation Works?) [https://www.techaheadcorp.

com/blog/decoding- instagram- system- design- architecture-

and-how-reels-recommendation-works/]. Tech Ahead, 2024. Datum

citováńı: 15. Ledna 2025.

8. BRYANT, Daniel. The Infrastructure Behind Twitter: Scaling Networ-

king, Storage and Provisioning [https://www.techaheadcorp.com/

blog/decoding- tiktok- system- design- architecture/]. Info Q,

2017. Datum citováńı: 15. Ledna 2025.

9. SINHA, Deepak. How TikTok Works: Decoding System Design & Archi-

tecture with Recommendation System [https://www.techaheadcorp.

com/blog/decoding-tiktok-system-design-architecture/]. Tech

Ahead, 2024. Datum citováńı: 15. Ledna 2025.

10. MDN. Web Authentication API [https://developer.mozilla.org/

en-US/docs/Web/API/Web_Authentication_API]. MDN Web Docs,

2025. Datum citováńı: 15. Ledna 2025.

11. ALI, Peshawa Jammal Muhammad. Two-Factor Authentication 2FA:

An Overview of HOTP and TOTP [https://www.researchgate.net/

profile/Peshawa- Muhammad- Ali/publication/375867152_Two-

Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/

links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-

2FA-An-Overview-of-HOTP-and-TOTP.pdf]. Koya University, 2023.

Datum citováńı: 15. Ledna 2025.

74

https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf

Zadání maturitního projektu z informatických předmětů

Jméno a příjmení: Patrik Stohanzl

Pro školní rok: 2024/2025

Třída: 4. A

Obor: Informační technologie 18-20-M/01

Téma práce: Návrh a realizace moderní sociální sítě

Vedoucí práce: RNDr. Jan Koupil, Ph.D.

Způsob zpracování, cíle práce, pokyny k obsahu a rozsahu práce:

Cílem tohoto projektu je navrhnout a vyvinout moderní a inovativní platformu pro sociální
interakci, která se bude odlišovat od stávajících řešení integrací pluginů a otevřením možností
pro komunitu. Platforma bude robustní, škálovatelná a zaměřená na potřeby moderních
uživatelů, poskytující jedinečný a obohacující zážitek.

Specifikace projektu:

1. Analýza a návrh:

o Bude provedena analýza existujících sociálních sítí a jejich funkcí.
o Budou definovány požadavky na systém a vytvořen návrh uživatelského

rozhraní.
o Bude navržena databázová struktura pro ukládání uživatelských dat,

příspěvků a pluginů.
2. Základní funkce:

o Přihlášení/Registrace:
▪ Bude implementována bezpečná a pohodlná metoda pro registraci

a přihlášení uživatelů.
▪ Bude zajištěna autentizace pomocí Passkeys pro bezpečné a

bezklikové přihlášení.
▪ Bude umožněno přihlášení pomocí QR kódu pro snadné přihlášení

na jiných zařízeních.
o Nahrávání obsahu:

▪ Uživatelům bude umožněno nahrávat fotografie a texty a sdílet je s
ostatními uživateli.

o Prohlížení sdíleného obsahu:
▪ Bude zajištěna možnost zobrazovat příspěvky a obsah ostatních

uživatelů.
o Přidávání přátel:

▪ Uživatelům bude umožněno přidávat své přátele a blízké jako
kamarády.

3. Integrace komunitních pluginů (nepovinný bod):

o Bude implementováno sandboxové prostředí pro bezpečnou exekuci kódu
pluginů na klientské straně.

o Budou poskytnuty nástroje pro vývoj a integraci pluginů komunitou.
4. Výzkum a návrh technologického stacku:

o Bude proveden výzkum dostupných technologií a nástrojů vhodných pro
vývoj tohoto typu aplikace.

o Na základě výzkumu bude navržen technologický stack.
o Při implementaci bude technologický stack ověřen a optimalizován.

5. Notifikace a zasílání zpráv:

o Bude implementován systém notifikací pro informování uživatelů o
nových příspěvcích, aktivitách a pluginových aktualizacích.

6. Testování a dokumentace:

o Bude provedeno důkladné testování aplikace, včetně funkčních testů, testů
uživatelského rozhraní a výkonu.

o Bude vytvořena uživatelská a vývojářská dokumentace.
7. Prezentace a obhajoba:

o Bude připravena prezentace projektu, která bude obsahovat demonstrační
video ukazující hlavní funkce aplikace.

o Bude připravena obhajoba projektu, včetně technických detailů a
získaných zkušeností.

Požadované výstupy:

• Funkční webová aplikace pro komunikaci a sdílení obsahu
• Bezpečné metody přihlášení a registrace uživatelů.
• Systém pro nahrávání, správu a prohlížení obsahu.
• Možnost přidávání přátel a správy uživatelských spojení.
• (Volitelně) Sandboxové prostředí pro vývoj a integraci pluginů.
• Systém notifikací a zasílání zpráv.
• Uživatelská a vývojářská dokumentace.
• Prezentace a demonstrační video.

Hodnocení:

Projekt bude hodnocen na základě následujících kritérií:

• Kvalita a funkčnost uživatelského rozhraní.
• Schopnost aplikace plnit všechny stanovené cíle.
• Inovativnost a originalita řešení.
• Flexibilita a přizpůsobitelnost systému.
• Úroveň dokumentace a prezentace projektu.
• Kreativita a efektivnost řešení.

Stručný časový harmonogram (s daty a konkretizovanými úkoly):
• Září: Analýza problému, tvorba UML usecase diagramů, návrh vzhledu aplikace
• Říjen-listopad: Vývoj backendové části (registrace, autentizace, správa souborů,
komunikační procesy a API, problémy nasazení)
• Prosinec: Vývoj frontendové části, příprava pro pluginy
• Leden: Finalizace projektu
• Únor - březen: Práce na dokumentaci a oprava chyb

	Úvod
	Analýza potřeby nové sociální platformy
	Současný stav sociálních platforem
	Problematika obchodně orientovaného přístupu
	Technologické nedostatky současných řešení
	Souhrn provedené analýzy

	Cíle práce
	Specifikace cílů

	Struktura práce

	Analýza a předpoklady
	Analýza trhu a existujících řešení
	Technické implementace dominantních platforem

	Technologické předpoklady a rámec projektu
	Použité technologie
	High Availability (HA)

	Funkční a nefunkční požadavky
	Funkční požadavky
	Nefunkční požadavky

	Návrh architektury systému
	Celkový přehled architektury
	Přehled klientské strany
	Přehled serverové části

	Mikroservisní architektura na platformě Kubernetes
	Komunikační vrstvy
	Bezpečnost nasazeného ekosystému
	Limitace prostředí
	Databázové řešení

	Detail implementace klíčových komponent
	Autentizace a bezpečnost
	Implementace Passkeys
	QR Code Sign-in
	Vícefaktorová autentizace
	Zařízením orientovaná autentizace
	Bezpečnostní mechanizmy na úrovni API

	Mikroservisní ekosystém
	Databázový ORM mapper
	Autentizační middleware
	Middleware pro validaci interních požadavků
	Middleware pro extrakci uživatelských dat
	Autentizační mikroservisa
	Uživatelská mikroservisa
	Obsahová mikroservisa
	Pluginová mikroservisa

	Mobilní aplikace
	Webová aplikace

	Ekosystém uživatelských pluginů
	Aplikační vrstva
	Verzování API
	Registrace a pouštění eventů
	Dynamické uživatelské rozhraní

	Pluginová vrstva
	Sandoxing u nativních zařízení

	UI
	Definice komponentů a jejich registrace
	Renderování komponentů

	Monitoring a benchmarking
	Monitorování a logování
	Benchmarking

	Diskuze a vyhodnocení výsledků
	Hodnocení dosažených výsledků
	Porovnání s existujícími řešeními
	Omezení implementace a návrhy na budoucí rozvoj

	Závěr
	Shrnutí klíčových poznatků
	Doporučení pro budoucí výzkum a praxi

	Přílohy
	Slovník pojmů
	Literatura

