STREDOSKOLSKA ODBORNA CINNOST

Obor: 18. Informatika

Implementace mikroservisni
architektury a dynamického
pluginového ekosystému pro robustni
socialni platformu s vyuzitim
orchestrace Kubernetes

Patrik Stohanzl

Pardubice 2025

STREDOSKOLSKA ODBORNA CINNOST

IMPLEMENTACE MIKROSERVISNi
ARCHITEKTURY A DYNAMICKEHO
PLUGINOVEHO EKOSYSTEMU PRO
ROBUSTNI SOCIALNI PLATFORMU S

VYUZITIM ORCHESTRACE
KUBERNETES

IMPLEMENTING MICROSERVICE
ARCHITECTURE AND DYNAMIC PLUGIN
ECOSYSTEM FOR A ROBUST SOCIAL
PLATFORM USING KUBERNETES
ORCHESTRATION

AUTOR Patrik Stohanzl

SKOLA DELTA - Stiedni skola informatiky
a ekonomie

KRAJ Pardubicky
SKOLITEL RNDr. Jan Koupil, PhD.
OBOR 18. Informatika

Pardubice 2025

Prohlaseni

Prohlasuji, ze svou préaci na téma Implementace mikroservisni architektury
a dynamického pluginového ekosystému pro robustni socidlni platformu s
vyuzitim orchestrace Kubernetes jsem vypracoval/a samostatné pod vedenim
RNDr. Jana Koupila, PhD. a s pouzitim odborné literatury a dalsich in-
formacnich zdroju, které jsou vsechny citovany v praci a uvedeny v seznamu
literatury na konci prace.

Déle prohlaguji, ze tisténd i elektronickd verze prace SOC jsou shodné
a nemam zavazny duvod proti zpristupnovani této prace v souladu se zakonem
¢. 121/2000 Sb., o pravu autorském, o préavech souvisejicich s pravem au-

torskym a zmeéné nékterych zékonu (autorsky zakon) v platném zmeéni.

V Pardubicich dne:

Patrik Stohanzl

Podékovani

Dékuji svému vedoucimu RNDr. Janu Koupilovi, PhD. za obétavou pomoc,
podnétné pripominky a nekonecénou trpélivost, kterou mi béhem prace po-

skytoval.

Abstrakt

Tato prace se zabyva navrhem a implementaci moderni socialni platformy So-
cigy, kterd resi identifikované nedostatky soucasnych socialnich siti prostfednictvim
inovativniho piistupu k architektute, bezpecnosti a rozsititelnosti. Prace ana-
lyzuje soucasny stav socidlnich platforem a identifikuje jejich hlavni nedo-
statky, zejména v oblasti uzivatelské kontroly, transparentnosti algoritmu a
bezpecnosti.

Na zakladé této analyzy je navrzena robustni mikroservisni architektura
vyuzivajici Kubernetes pro orchestraci, HashiCorp Consul pro Service Mesh
a PostgreSQL s Patroni pro zajisténi vysoké dostupnosti dat. Klicovym inova-
tivnim prvkem je implementace dynamického pluginového systému zalozeného
na WebAssembly, ktery umoznuje bezpecné spousténi kodu tietich stran v
sandboxovaném prostiedi.

Prace detailné popisuje implementaci jednotlivych komponent systému,
véetné autentizacnich mechanismu vyuzivajicich standard FIDO2 (Passkeys),
mikroservisniho ekosystému a klientskych aplikaci pro mobilni a webové plat-
formy. Zvlastni pozornost je vénovana vyvoji vlastnitho Rust frameworku
pro tvorbu pluginu s podporou JSX-podobné syntaxe, ktery vyrazné zjed-
nodusuje vyvoj rozsiteni.

Vysledky benchmarkingu ukazuji vynikajici vykon Rust implementace
pluginového systému, ktera dosahuje az 200 000 fps pfi zpracovani virtualniho
DOM. Préce také identifikuje omezeni soucasné implementace a navrhuje
sméry budouciho vyvoje, véetné plné integrace plugini do hlavni aplikace,

implementace multi-cluster feSeni a pokrocilych algoritmu pro personalizaci

obsahu.

Obsah

1 Uvod

1.1 Analyza potieby nové socialni platformy
1.1.1 Soucasny stav socidlnich platforem
1.1.2 Problematika obchodné orientovaného pristupu
1.1.3 Technologické nedostatky soucasnych feseni
1.1.4 Souhrn provedené analyzy

1.2 Cileprace
1.2.1 Specifikace cila

1.3 Struktura préace

2 Analyza a predpoklady

2.1 Analyza trhu a existujicich feseni
2.1.1 Technické implementace dominantnich platforem

2.2 Technologické predpoklady a ramec projektu
2.2.1 Pouzité technologie
2.2.2 High Availability (HA)

2.3 Funkéni a nefunkéni pozadavky
2.3.1 Funkéni pozadavky
2.3.2 Nefunkéni pozadavky

3 Navrh architektury systému
3.1 Celkovy prehled architektury
3.1.1 Prehled klientské strany

3.1.2 Prehled serverové ¢asti

10
10
10
11
12
13
13
13
14

16
16
16
17
17
19
20
20
21

3.2 Mikroservisni architektura na platformé Kubernetes 26

3.3 Komunikaéni vrstvyo 28
3.4 Bezpecnost nasazeného ekosystému 29
3.5 Limitace prosttedi 30
3.6 Databdzové feSeni Lo 32
Detail implementace klicovych komponent 34
4.1 Autentizace a bezpecnost 34
4.1.1 Implementace Passkeys 34
4.1.2 QR Code Sign-in oL 35
4.1.3 Vicefaktorova autentizace 35
4.1.4 Zatizenim orientovana autentizace 35
4.1.5 Bezpec¢nostni mechanizmy na drovni APT 35
4.2 Mikroservisni ekosystém o000 36
4.2.1 Databdzovy ORM mapper 37
4.2.2 Autentiza¢ni middleware 38
4.2.3 Middleware pro validaci internich pozadavku 38
4.2.4 Middleware pro extrakci uzivatelskych dat 39
4.2.5 Autentizacni mikroservisa 39
4.2.6 Uzivatelskd mikroservisa 40
4.2.7 Obsahova mikroservisa 40
4.2.8 Pluginova mikroservisao 41
4.3 Mobilni aplikace 42
4.4 Webova aplikace oo 43
Ekosystém uzivatelskych plugint 45
5.1 Aplikacni vrstva 45
5.1.1 Verzovani API. 45
5.1.2 Registrace a pousténi eventu 47
5.1.3 Dynamické uzivatelské rozhrani 49
5.2 Pluginova vrstvao 52
5.2.1 Sandoxing u nativnich zafizeni 52

5.3.1
5.3.2

Definice komponentu a jejich registrace

Renderovani komponenta

6 Monitoring a benchmarking

6.1 Monitorovani a logovani 0oL

6.2 Benchmarking oo

7 Diskuze a vyhodnoceni vysledka

7.1 Hodnoceni dosazenych vysledka

7.2 Porovnani s existujicimi feSenimi L.

7.3 Omezeni implementace a navrhy na budouci rozvoj

8 Zavér

8.1 Shrnuti klicovych poznatka

8.2 Doporuceni pro budouci vyzkum a praxi

9 Piilohy

Slovnik pojmu

Literatura

59
59
60

63
63
64
65

67
67
68

70

72

Kapitola 1

Uvod

1.1 Analyza potreby nové socialni platformy

Socialni média se stala nedilnou soucasti kazdodenniho zivota. Pfi pohledu
na Cisla - pres 5,24 miliardy aktivnich uzivatelu po celém svété travi v
pruméru vice nez dvé hodiny denné na téchto platforméch. Je zfejmé, ze jde
o vyznamny fenomén s rozsahlym dopadem na spolec¢nost. Tato kapitola ana-
lyzuje potfebu vyvoje nové socialni platformy v kontextu soucasnych trendu,

technologickych moznosti a nedostatku existujicich feseni.

1.1.1 Soucasny stav socialnich platforem

Ekosystém socidlnich médii prochazi v roce 2025 vyznamnou transformaci.
Podle nejnovéjsich dat (1) prumérny uzivatel internetu vyuziva témeér 7
ruznych socidlnich platforem mésicné. Tato fragmentace ukazuje na rostouci
specializaci platforem a diverzifikaci uzivatelskych potteb v digitalnim pro-
storu.

Pii analyze soucasnych trendu lze identifikovat nékolik klicovych zmeén.
Algoritmy pro distribuci obsahu prochézeji rekalibraci - platformy jiz nehod-
noti uspéch pouze podle poctu zobrazeni, ale zaméruji se vice na kvalitu
interakci a udrzeni uzivatelu. Tento posun odrazi rostouci konkurenci o po-

zornost uzivateli(2).

10

Zaroven dochézi k saturaci informac¢niho prostoru obsahem generovanym
umeélou inteligenci, coz vytvari nové vyzvy pro udrzeni autenticity. Uzivatelé
stale vice preferuji autenticky obsah a transparentni komunikaci. Uspéém’
tvurci jiz nestavi svou strategii primarné na objemu obsahu, ale na analy-
ticky podlozeném piistupu k tvorbé relevantniho obsahu pro konkrétni cilové
skupiny.

Tyto zmény vytvareji prostor pro nové pristupy k navrhu platforem,
které by lépe reflektovaly ménici se preference uzivatelu a tesily nedostatky
soucasnych platforem v oblastech autenticity, personalizace a kontroly nad

obsahem.

1.1.2 Problematika obchodné orientovaného pristupu

Pti analyze soucasnych socidlnich siti 1ze identifikovat, alespon z uzivatelského
hlediska, dulezity aspekt. Dominantni platformy jsou primérné orientovany
na obchodni zajmy, nikoliv na potteby uzivatelu. Toto se projevuje v nékolika
klicovych aspektech.

Uzaviené algoritmy funguji jako netransparentni mechanizmy, které ne-
poskytuji dostatecnou kontrolu nad konzumovanym obsahem. Jsou navrzeny
tak, aby maximalizovaly zapojeni uzivateli a dobu stravenou na platformeé,
coz vede k vytvareni ,filtracnich bublin“ (3) a podporuje informac¢ni valky
(IW) (4)

Dalsim problémem je absence moznosti personalizace. Uzivatelé maji mi-
nimalni kontrolu nad vzhledem a funkcionalitou rozhrani, coz omezuje schop-
nost prizpusobit platformu vlastnim potfebam. Vzhledem k dynami¢nosti
socialnich platforem je to vyznamny problém. Pti implementaci novych funkei
jsou uzivatelé nuceni prijmout vSechny zmény bez moznosti zachovat prefe-
rované aspekty predchozich verzi. Tato absence kontroly predstavuje dlouho-
doby problém pro vztah mezi platformou a jejimi uzivateli.

Ekonomicky model soucasnych platforem je ¢asto nevyhodny pro tvurce
obsahu. Platformy si bézné uctuji az 45% z prijmu tvurcu a neposkytuji dyna-

mické modely podporujici jejich rust. Napiiklad YouTube si ponechdva 45%

11

ze v8ech ptimych prijmu tvurcu, coz limituje potencidl kreativni ekonomiky

a muze vést k odlivu talentl na alternativni platformy(5).

1.1.3 Technologické nedostatky soucasnych reSeni

Z technologického hlediska vykazuji souc¢asné socialni platformy nékolik vyznamnych
nedostatku. Chybi jim kvalitni multiplatformni podpora, coz brani konzis-
tentni uzivatelské zkusenosti na ruznych zafizenich. Webova rozhrani jsou
¢asto neoptimalizovana, primarné prizpusobena mobilnim zafizenim bez adekvatniho
vyuziti moznosti desktopovych prohlizecu.

V oblasti bezpecnosti a autentizace zustavaji dominantni platformy po-
zadu. Zastaralé autentizacni mechanizmy zalozené primarné na heslech predstavuji
bezpecnostni riziko a zhorsuji uzivatelskou zkusenost. Absence podpory mo-
derngjsich pristupu, jako jsou Passkeys, které nabizeji vyssi uroven zabezpeceni
pri soucasném zjednoduseni procesu piihlasovani, ukazuje na technologickou
stagnaci v této oblasti.

Ochrana zranitelnych skupin, zejména déti, je feSena nedostatecné. Im-
plementované mechanizmy se ¢asto omezuji pouze na zakladni omezeni casu
bez sofistikovanéjsich pristupu k ochrané pred nevhodnym obsahem. Tento
pristup neodpovida rostoucimu durazu na digitalni wellbeing a bezpecnost
online prostredi.

V piipadech, kdy platformy implementuji zakladni filtra¢ni mechanizmy
pro ochranu mladsich uzivatelu, jako v pripadé YouTube Kids, dochéazi k frag-
mentaci uzivatelského prostredi formou oddélenych aplikaci bez adekvatni
integrace s hlavni platformou. Specializované verze maji vyznamnda omezeni
v personalizaci obsahu a chybi jim mechanizmy pro zachovani preferenci
pii pfechodu mezi prostfedimi. Absence graduédlniho prechodového modelu
mezi platformami pro ruzné vékové kategorie predstavuje vyznamny problém
zejména pro adolescentni uzivatele, ktefi prerustaji détské platformy, ale
zaroven nejsou dostateéné chranéni pred potencialné nevhodnym obsahem

v prostiedi pro dospélé.

12

1.1.4 Souhrn provedené analyzy

Na zakladé provedené analyzy lze dospét k zavéru, ze existuje vyznamny pro-
stor pro vyvoj nové socialni platformy, ktera by fesila identifikované nedo-
statky soucasnych reseni. Kombinace uzivatelsky orientovaného ptistupu, po-
krocilych architektonickych principu, modernich autentiza¢nich mechanismu
a personifikovatelné platformy predstavuje slibny smér pro implementaci ta-

kové platformy.

1.2 Cile prace

Hlavnim cilem této prace je navrhnout a implementovat robustni socialni
platformu s integrovanym ekosystémem plugint, ktera resi identifikované ne-
dostatky soucasnych feSeni. Prace se zamétuje na vytvoreni komplexni ar-
chitektury, kterd bude reflektovat aktualni technologické trendy a zaroven
poskytne uzivatelsky orientovany pristup k socidlnim interakcim v digitalnim

prostoru.

1.2.1 Specifikace cili

Primarnim cilem je vyvinout modularni architekturu socialni platformy, ktera
umozni flexibilni rozsititelnost prostrednictvim pluginového systému zalozeného
na technologii WebAssembly. Tato architektura je navrhovana s ohledem na

skalovatelnost, bezpecnost a udrzitelnost kodu.

e Sekundérnim cilem je implementace pokrocilych autentiza¢nich mecha-

nismu s podporou standardu FIDO2 (6) a technologie Passkeys.

e Tretim cilem je vytvoreni multiplatformniho feseni s optimalizovanym
uzivatelskym rozhranim pro ruzné zatizeni, které poskytne konzistentni

uzivatelskou zkusenost napii¢ desktopovymi i mobilnimi platformami.

e Ctvrtym cilem je ndvrh a implementace transparentnich algoritmt pro

distribuci obsahu, které uzivatelim poskytnou vétsi kontrolu nad kon-

13

zumovanym obsahem a umozni personalizaci informaé¢niho toku podle

individualnich preferenci.

e Patym cilem je vytvoreni gradudlniho prechodového modelu pro ruzné
vekové kategorie uzivatelu, ktery zajisti adekvatni ochranu zranitelnych

skupin pti zachovani moznosti personalizace a uzivatelské svobody.

e Sestym cilem je implementace ekonomického modelu podporujiciho

v e

namickych nastroju pro podporu rustu komunity.

Poslednim cilem je evaluace vytvoreného feseni z hlediska uzivatelské
zkuSenosti, technické efektivity a potencialu pro dlouhodobou udrzitelnost
v dynamicky se ménicim prostredi socialnich médii.

Dosazeni téchto cili by meélo vést k vytvoreni socidlni platformy, ktera
nejen resi soucasné nedostatky existujicich feseni, ale také poskytuje flexi-
bilni zaklad pro budouci inovace v oblasti socidlnich interakci v digitalnim

prostoru.

1.3 Struktura prace

Tato prace je strukturovana do osmi hlavnich kapitol, které systematicky
pokryvaji cely proces navrhu a implementace robustni socialni platformy s
ekosystémem pluginu.

Uvodn{ kapitola predstavuje problematiku socialnich platforem v soucasném
digitalnim prostiedi. Analyzuje potfebu nové socialni platformy v kontextu
identifikovanych nedostatku existujicich feseni a stanovuje cile prace, které
reflektuji ambici vytvorit uzivatelsky orientovanou socialni platformu s durazem
na modularitu a rozsititelnost.

Druha kapitola se vénuje detailni analyze trhu a existujicich feseni, pricemz
definuje technologické predpoklady a ramec projektu. Zvlastni pozornost

je vénovana technologickému stacku zahrnujicimu Kubernetes a na né na-

14

vazujici dalsi technologie. Kapitola rovnéz specifikuje funkéni a nefunkéni
pozadavky, které formuji zaklad pro nasledny navrh architektury.

Tteti kapitola predstavuje komplexni navrh architektury systému. Zacina
celkovym prehledem architektury s dirazem na klientskou a serverovou ¢ast,
pokracuje popisem mikroservisni architektury implementované na platformeé
Kubernetes a vénuje se komunika¢nim vrstvam, bezpec¢nostnim aspektum a
databazovému teseni. Diskutuje také limitace zvoleného prosttedi.

Ctvrtd kapitola se zaméfuje na detailni implementaci klicovych kompo-
nent systému. Popisuje spravu klicu pomoci HashiCorp Vault, implemen-
taci autentiza¢nich mechanismu a bezpec¢nostnich prvku, strukturu mikro-
servisniho ekosystému a implementaci frontendové aplikace v React Native
Expo a Next.js.

Pata kapitola je vénovana ekosystému uzivatelskych pluginu, ktery predstavuje
jeden z hlavnich inovativnich prvku navrhovaného reseni. Popisuje aplika¢ni
vrstvu véetné verzovaci API a mechanismu pro registraci a zpracovani udalosti,
pluginovou vrstvu se zamérenim na sandboxing u nativnich zafizeni a imple-
mentaci uzivatelského rozhrani s durazem na dynamické renderovani kom-
ponentu.

Sest4 kapitola se zab§yv4 monitoringem a benchmarkingem implemento-
vané¢ho systému, pficemz popisuje pouzité nastroje a metodiky pro monito-
rovani vykonu a stability platformy:.

Sedma kapitola prinasi diskuzi a vyhodnoceni dosazenych vysledku. Hod-
noti miru naplnéni stanovenych cilii, porovnava implementované reseni s exis-
tujicimi alternativami a identifikuje omezeni soucasné implementace spolu s
navrhy na budouci rozvoj.

Zavérecna kapitola shrnuje klicové poznatky ziskané béhem realizace pro-
jektu a formuluje doporuceni pro budouci vyzkum a praxi v oblasti vyvoje
socialnich platforem.

Prace je doplnéna ptilohami obsahujicimi diagramy architektury, ukazky
koédu, konfiguraéni soubory a dalsi relevantni dokumentaci, které poskytuji

detailnéjsi vhled do technickych aspektu implementovaného feseni.

15

Kapitola 2

Analyza a predpoklady

2.1 Analyza trhu a existujicich reseni

Na rozdil od obecné analyzy v tvodni kapitole se tato sekce zamétruje na
konkrétni technické implementace existujicich socidlnich platforem a jejich
architektonické pristupy. Cilem je identifikovat specifické technické aspekty,

které lze vylepSit v navrhovaném feseni.

2.1.1 Technické implementace dominantnich platforem

Soucasné socidlni platformy vyuzivaji rizné architektonické ptistupy k reseni
problému skélovatelnosti, bezpecnosti a uzivatelské zkusenosti. Meta (Face-
book, Instagram) implementovala rozsdhlou mikroservisni architekturu s pro-
prietarnimi feSenimi pro skédlovani a distribuci zatéze. Spolecnost vyvinula
vlastni systém pro spravu kontejneru podobny Kubernetes a specializované
nastroje pro monitorovani vykonu. Z hlediska autentizace vsak platforma
spoléha primarné na tradi¢ni hesla doplnéna dvoufaktorovou autentizaci, bez
plné podpory modernich standardu jako FIDO2. (7)

X (difve Twitter) prosel vyznamnou architektonickou transformaci, kdy
puvodni monolitickou aplikaci nahradil mikroservisni architekturou. Plat-
forma vyuziva kombinaci proprietarnich a open-source technologii pro spravu

infrastruktury. Vyznamnym aspektem architektury X je duraz na real-time

16

zpracovani dat, coz vytvari specifické vyzvy pro skdlovéni a konzistenci. (8)

TikTok predstavuje moderni pristup s durazem na efektivni distribuci vi-
deo obsahu a pokrocilé algoritmy pro personalizaci. Platforma vyuziva cloud-
native piistup a proprietarni feSeni pro zpracovani multimedialniho obsahu. Z
bezpecnostniho hlediska vsak TikTok ¢eli kritice kvuli nedostateéné transpa-

rentnosti zpracovani uzivatelskych dat. (9)

2.2 Technologické predpoklady a ramec pro-
jektu

V navaznosti na identifikované technologické mezery existujicich platforem
tato kapitola predstavuje technologicky stack vyuzity pii implementaci na-
vrhovaného feSeni. Zvolené technologie byly peclivé vybrany s ohledem na
jejich schopnost adresovat zjisténé nedostatky a poskytnout robustni zédklad
pro moderni socidlni platformu s dynamickym pluginovym systémem.
Zatimco dominantni platformy jako Meta a Twitter vyvinuly proprietarni
feSeni pro spravu kontejneru a mikrosluzeb, navrhované feseni stavi na stan-
dardizovanych open-source technologiich, které umoznuji vétsi flexibilitu a
transparentnost. Namisto vytvareni uzavienych ekosystému se zaméfuje na
implementaci oteviené architektury, kterd podporuje rozsititelnost a intero-

perabilitu.

2.2.1 Pouzité technologie

Kubernetes slouzi jako platforma pro orchestraci kontejnerizovanych aplikaci.
Umoznuje efektivni skalovani, automatizovanou spravu a nasazeni jednot-
livych mikrosluzeb. Mezi hlavni piinosy patii robustnost a flexibilita spravy
clusteru. V ramci implementace jsou vyuzivany pokrocilé funkce jako Ingress
pro smérovani provozu, pravidla sitové komunikace (Network Policies), ta-
jemstvi (Secret) a konfiguraéni mapy (ConfigMaps) pro spravu konfigurace a

manazer certifikdtu pro automatickou spravu SSL certifikatu. Volba Kuber-

17

netes oproti alternativam jako Docker Swarm byla u¢inéna predevsim kvl
potiebé vyssi skdlovatelnosti a robustnéjsitho ekosystému pro spravu mikro-
sluzeb, které jsou klicové pro architekturu moderni socialni sité.

Consul je nastroj urceny pro spravu, registraci a konfiguraci mikroservis.
Diky implementaci Service Mesh lze dosahnout bezpeéné komunikace mezi
jednotlivymi sluzbami prostfednictvim mTLS. V ramci projektu je Consul
vyuzivan ve tfech klicovych rolich: jako API Gateway pro centralizovanou
spravu pristupu k API, jako Service Mesh pro zabezpecenou komunikaci
mezi sluzbami s vyuzitim Proxy Defaults a jako Terminating Gateway pro
bezpecnou komunikaci s externimi sluzbami. Volba Consulu oproti alterna-
tivam jako Istio byla provedena na zakladé jeho nizsich naroku na hardwarové
zdroje pfi zachovani klicové funkcionality.

Jako relaéni databazovy systém je vyuzivan PostgreSQL s nadstavbou
Spillo a Patroni pro zajisténi vysoké dostupnosti. Tato kombinace umoziuje
automatickou replikaci dat a failover v ptipadé vypadku primarniho uzlu.
Vyhody spocivaji v robustnosti, podpote pokrocilych dotazovacich mecha-
nismu a moznosti vyuziti postgresql-operatoru pro zajisténi vysoké dostup-
nosti. Spillo byl zvolen pro jeho jednoduchost pii konfiguraci Patroni s Post-
greSQL a nastaveni databazovych pfipojeni.

HashiCorp Vault slouzi k bezpecné spraveé tajemstvi a sifrovacich klicu.
Umoznuje dynamickou distribuci a bezpeéné ukladani citlivych dat, ¢imz
minimalizuje riziko jejich tuniku. V ramci projektu je Vault planovan jako
klicovy komponent pro spravu Sifrovacich klicu a zabezpeceni citlivych dat.
Jednd se o jediné self-hosted Feseni pro spravu klicu (KMS), které je dobte
integrovano s Consulem a poskytuje komplexni moznosti pro zabezpeceni dat
v mikroservisnim prostiedi.

Pro vyvoj mobilnich aplikaci byl zvolen framework React Native Expo,
ktery umoznuje rychly vyvoj multiplatformnich aplikaci. Expo podporuje
snadnou integraci s nativnimi funkcemi zaifzen{ a zajistuje konzistentni uzivatelsky
zazitek napri¢ ruznymi operacnimi systémy. Pro webovou ¢ast aplikace je

vyuzivan Next.js jako moderni React framework poskytujici optimalni vyvojové

18

prostiedi a vykonnostni optimalizace. Volba téchto technologii byla u¢inéna
na zakladé jejich multiplatformniho charakteru a synergie s existujicimi zna-
lostmi React ekosystému. V ramci implementace byly vyvinuty vlastni na-
tivni moduly v Kotlinu pro podporu WebAssembly a Passkey autentizace,
které nejsou standardné soucasti React Native Expo.

WebAssembly je technologie umoznujici spousténi vysoce vykonného kédu
v sandboxovaném prostiedi. V projektu je vyuzivana pro implementaci dyna-
mického pluginového systému, ktery zajistuje modularitu a bezpecné rozsiteni
funkcénosti. WASM byl zvolen predevsim pro jeho multiplatformni povahu a
robustni bezpe¢nostni model, ktery zajistuje, Zze spousténi pluginu tietich
stran neohrozi stabilitu a bezpecnost aplikace.

Pro efektivni distribuci statického obsahu je vyuzivéna sit Cloudflare R2
CDN, kterd poskytuje globélni sit pro rychlé doruc¢ovani medidlniho ob-
sahu. Toto TeSeni vyznamné snizuje latenci pfi nacitani obrazku a videl a
zaroven redukuje zatéz na backend infrastrukturu. Cloudflare R2 nabizi také
ochranu proti DDoS ttokum a efektivni caching mechanizmy, které optima-
lizuji naklady na provoz.

Pro zajisténi komplexniho monitorovani a logovani je implementovan
stack Grafana, Loki a Prometheus bézici v Kubernetes clusteru mimo Consul
Service Mesh. Tento stack poskytuje robustni nastroje pro sledovani vykonu,
detekci anomalif a analyzu logu, coz je klicové pro udrzeni stability a vykonu

komplexniho mikroservisniho prostredi.

2.2.2 High Availability (HA)

Vysoké dostupnost predstavuje klicovy aspekt navrhované architektury, zajistujict
neptetrzity provoz systému i v pfipadé selhani jednotlivych komponent. V
kontextu implementovaného teseni zahrnuje HA nékolik tirovni redundance.
Na trovni mikrosluzeb je vysoka dostupnost zajisténa prostiednictvim Con-
sul Service Mesh, ktery umoznuje implementaci Mesh Gateway pro komu-
nikaci mezi vice clustery. Tento pristup zajistuje efektivni skalovdni mik-

rosluzeb uvniti Service Mesh. Na tdrovni databédze je implementovana vy-

19

soké dostupnost pomoci Spillo s Patroni a PostgreSQL, coz zajistuje auto-
matickou replikaci dat a mechanismus hlasovani pro urceni master uzlu v
pripadé vypadku. Na trovni infrastruktury je vyuzivan Kubernetes pro au-
tomatické zotaveni po vypadku a redistribuci zatéze mezi dostupnymi uzly.
Tento vicevrstvy pristup k vysoké dostupnosti je nezbytny pro zajisténi spo-
lehlivého provozu globédlné dostupné socidlni sité s predpokladanym vysokym
poctem soucasné pripojenych uzivatelu.

Zvoleny technologicky stack pfedstavuje vyvazeny kompromis mezi ro-
bustnosti, flexibilitou a bezpecnosti. Kazdd z uvedenych technologii byla
peclivé vybrana s ohledem na piinos k dosazeni cilu projektu, tj. vytvoreni
moderni, skalovatelné a bezpecné socidlni sité. Prestoze implementace takto
komplexniho technologického stacku ptredstavuje znacnou vyzvu z hlediska
ucebni kiivky a integrace jednotlivych komponent, vysledné feseni posky-
tuje solidni zaklad pro realizaci inovativni socialni platformy s durazem na

bezpecnost, skalovatelnost a rozsifitelnost.

2.3 Funkéni a nefunkéni pozadavky

Na zakladé analyzy trhu a identifikovanych technologickych mezer byly sta-
noveny nasledujici funkéni a nefunkéni pozadavky pro navrhovanou socialni

platformu.

2.3.1 Funké¢ni pozadavky

Implementace robustniho pluginového systému predstavuje klicovy funkéni
pozadavek navrhované platformy. Systém musi umoznit rozsiteni funkcio-
nality prostrednictvim WebAssembly, zajistit bezpecné spousténi kédu v
sandboxovaném prostiedi a poskytnout standardizované API pro interakci
s platformou. Pluginovy systém by mél podporovat dynamické uzivatelské
rozhrani, registraci a zpracovani udalosti a verzovani API pro zajisténi dlou-
hodobé kompatibility.

Autentizacni mechanizmy musi zahrnovat podporu modernich standardu,

20

zejména Passkeys vyuzivajicich FIDO2 protokol, coz eliminuje potfebu tradi¢nich
hesel. Implementace QR kodu pro piihldseni predstavuje dalsi pozadavek,
ktery zjednodusi proces autentizace napii¢ zatfizenimi. Tyto mechanizmy
musi byt implementovany s durazem na bezpecnost a uzivatelskou ptivétivost.

Sprava obsahu vyzaduje implementaci systému pro sdileni a ukladani mul-
timedialniho obsahu, véetné obréazku a textovych prispévku. Systém musi
podporovat ruzné formaty obsahu a zajistit efektivni distribuci prostfednictvim
CDN. Transparentni algoritmy pro personalizaci zobrazovaného obsahu s
moznosti uzivatelské kontroly predstavuji dalsi klicovy pozadavek.

Socidlni interakce musi byt implementovany prostifednictvim systému uzivatelskych
kruht (circles), ktery umozni vytvareni socidlnich vazeb mezi uzivateli. Tento
systém musi podporovat ruzné typy vztahu, véetné pratelstvi, sledovani a
skupinovych interakci, a zajistit granularni kontrolu soukromi pro ruzné typy
socialnich vazeb. Uzivatelé musi mit moznost pridavat jiné uzivatele do spe-

cifickych kruhu a prizpusobovat viditelnost obsahu pro jednotlivé kruhy.

2.3.2 Nefunkéni pozadavky

Skélovatelnost systému predstavuje zdsadni nefunkéni pozadavek. Architek-
tura musi byt schopna horizontalniho skalovani pro podporu rostouciho poctu
uzivatelu a objemu dat. Implementace na platformé Kubernetes musi umoznit
efektivni distribuci zatéze a optimalizaci vykonu pii Spickach.

Bezpecnost vyzaduje implementaci komplexnich opatieni, véetné mTLS
pro zabezpecenou komunikaci mezi mikrosluzbami, Sifrovani dat v klidu i
pri prenosu a ochrany proti béznym typum utoku. Autentiza¢ni mechani-
zmy musi splinovat nejnovéjsi bezpecnostni standardy a poskytovat robustni
ochranu uzivatelskych uctu.

Observabilita systému musi byt zajisténa prostfednictvim implementace
monitorovacich a logovacich nastroju. Tyto néstroje musi poskytovat kom-
plexni prehled o vykonu a stavu systému, umoznit detekci anomalii a efektivni
diagnostiku problémi.

Uzivatelska zkusenost musi byt konzistentni a optimalizovana napti¢ ruznymi

21

zafizenimi a platformami. Implementace responzivniho designu a optimali-
zace pro ruzné velikosti obrazovek a typy interakci predstavuji klicové pozadavky
v této oblasti. Systém musi poskytovat intuitivni rozhrani pro spravu uzivatelskych
kruhti a personalizaci obsahu.

Dostupnost systému musi dosahovat vysoké drovné (99,9% a vyssi) prostrednictvim
redundance, automatického zotaveni po vypadku a geografické distribuce
sluzeb. Implementace strategie pro minimalizaci dopadu planovanych udrzbovych

praci predstavuje dalsi pozadavek v této oblasti.

22

Kapitola 3
Navrh architektury systému

Tato kapitola predstavuje komplexni navrh architektury systému socialni
platformy, kterd implementuje identifikované pozadavky a fesi nedostatky
soucasnych reseni. Architektura je navrzena s durazem na modularitu, skalovatelnost
a bezpecnost, pricemz vyuziva moderni technologické piistupy popsané v

predchozi kapitole. Platformu byla pojmenovana Socigy.

3.1 Celkovy prehled architektury

Navrzena architektura socidlni platformy Socigy predstavuje komplexni eko-
systém vzajemné propojenych komponent, které spolecné tvoii robustni zéaklad
pro provoz moderni socialni sité, jak je znazornéno na obrazku 3.1. Archi-
tektura je koncipovana jako distribuovany systém sklddajici se ze tii hlavnich
casti: klientské aplikace, cloudové infrastruktury a externich sluzeb pro ukladani
a distribuci obsahu.

Z hlediska topologie je systém navrzen jako vicevrstva architektura, kde
jednotlivé vrstvy maji jasné definované odpovédnosti a rozhrani. Tento pristup
umoznuje nezavisly vyvoj, testovani a nasazeni jednotlivych komponent, coz

zvysuje agilitu vyvojového procesu a usnadiuje udrzbu systému.

23

.

Follower

oNs

=5

olg

|
|
|
| Repica
b
|
|

....... Internal

- Accounts
% API Gateway @ ingresses
J

Obrézek 3.1: Ptehled celkové architektury

3.1.1 Prehled klientské strany

Klientska cast architektury, zobrazena na obrazku 3.2, je reprezentovana
dvéma hlavnimi komponentami: mobilni aplikaci vyvinutou s vyuzitim fra-
meworku React Native Expo a webovou aplikaci implementovanou pomoci

Next.js.

24

r A
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: Custom WASM Runner Madule :
1 1
1 x 1
1 Main App L] .
1 Custam 1
: Dynamic plugin :
1 Ul renderer 1
1 I 1
1 1
1 Custom 1
' Custom Rust Plugin API '
1 Custarm Native Custom plugin WASM 1
1 Plugin AP runner AP 1
1 Passkey Module versloning system 1
1 1
1 1
1 1
1 1
L d

Obréazek 3.2: Ptehled klientské architektury

3.1.2 Prehled serverové ¢asti

Serverova ¢ast architektury, oznacena jako ”Socigy Cloud”a znazornéna na
obrazku 3.3, predstavuje jadro celého systému a je implementovana na plat-

formé Kubernetes.

25

.

Nginx / Forwarder

Consul Servers

Leader

prometheus | ..e T3] {3
Repica pooresqL RePIEd
Config Maps
Grafana | I
H
i
|
Secrets .

Terminating
Gateway

Content

Frontend

&

APl Gateway

Internal
Accounts

Internal Team

©

Follower Follower
1 Availability Zone (Cluster) Uil
| - : Data Storage
1 | Monitoring + Data Collection ! > 4..:
o ./' X
Patroni
Consul Client Spilo

Certificate |
Manager |

R2 Object Storage
Images Videos Audios Plugins
A
H DNS

3.2 Mikroservisni architektura na platformeé

Mikroservisni architektura rozdéluje komplexni systém do mensich, nezavisle
nasaditelnych sluzeb komunikujicich pies jasné definovana rozhrani. Zvoleny
pristup umoznuje nezavisly vyvoj, testovani a nasazeni jednotlivych kompo-
nent, coz vyrazné zvysuje agilitu vyvojového procesu a usnadnuje udrzbu

systému. V ramci implementace bylo identifikovano nékolik klicovych domén

Obrazek 3.3: Prehled serverové architektury

Kubernetes

reprezentovanych samostatnymi mikrosluzbami:

e Autentizace

e Sprava uzivatelu

26

e Sprava obsahu

e Pluginy

e Umeld inteligence
e Messaging

e Komunity

e Reklamy

e Platby

Kubernetes poskytuje komplexni sadu nastroju pro orchestraci mikro-
sluzeb. Pozadovany stav systému je definovan pomoci deklarativnich ma-
nifesti specifikujicich pocet replik, pozadavky na vypocetni zdroje, sitové
politiky a dalsi konfiguracni parametry. Zvolend metoda umoznuje verzovani
infrastruktury jako kédu a zajistuje transparentni mechanismus pro spravu
Zmen.

Pro zajisténi izolace a spravu vypocetnich zdroju jsou vyuzivany Ku-
bernetes namespaces poskytujici logické oddéleni jednotlivych ¢asti systému.
Implementace umoznuje efektivni spravu pristupovych opravnéni a nastaveni
sifovych politik.

Konfigurace mikrosluzeb je realizovédna prostiednictvim ConfigMaps a
Secrets, které zajistuji spravu konfigurac¢nich parametri a citlivych infor-
maci. ConfigMaps slouzi pro bézné konfiguracni parametry, zatimco Secrets
ukladaji citlivé informace jako pristupové uidaje k databazi nebo API klice.
Implementovany pristup oddéluje konfiguraci od kédu a umoznuje dynamic-
kou aktualizaci bez nutnosti rekompilace a nasazeni novych verzi aplikaci.

Vysoka dostupnost a odolnost vuéi vypadkum je zajisténa strategii rozlozeni
zatéze naptic vice uzly v ramci Availability Zone. Kubernetes automaticky
distribuuje instance mikrosluzeb mezi dostupné uzly a pri vypadku jednoho
uzlu presouva postizené instance na funkéni uzly, ¢imz minimalizuje dopad

na dostupnost sluzby.

27

Sprava nasazeni novych verzi mikrosluzeb je realizovana strategii rol-
ling update, ktera postupné nahrazuje bézici instance novymi verzemi bez
vypadku sluzby. Implementace minimalizuje riziko spojené s nasazenim novych
verzi a umoznuje rychlé zotaveni pti problémech.

Pro monitorovani stavu a vykonu mikrosluzeb jsou implementovany rea-
diness a liveness probes, které Kubernetes vyuziva k detekci nefunkcénich in-
stanci a jejich automatickému restartovani. Readiness probes urcuji pripravenost
noveé nasazené instance prijimat provoz, zatimco liveness probes detekuji in-

stance v nekonzistentnim stavu vyzadujici restart.

3.3 Komunikac¢ni vrstvy

Efektivni komunikace mezi komponentami systému predstavuje klicovy aspekt
navrzené architektury. Jak ukazuje obrazek 3.1, systém vyuziva speciali-
zované komunikac¢ni vrstvy zajistujici bezpecénou, spolehlivou a vykonnou
vyménu dat.

Pro komunikaci mezi mikrosluzbami v Service Mesh je primarné vyuzivan
protokol gRPC, ktery poskytuje vysoky vykon, nizkou latenci a podporu
streamovani dat. Tento protokol, zalozeny na HTTP /2, umoznuje efektivni
serializaci strukturovanych dat pomoci Protocol Buffers a podporuje bidi-
rekcionalni streamovani, coz je zasadni pro implementaci real-time funkci
socialni platformy. Vyhodou gRPC je také generovani klientskych a ser-
verovych rozhrani z defini¢nich soubort, coz vyrazné zjednodusuje vyvoj a
udrzbu API.

Consul Service Mesh je implementovan prostiednictvim Envoy proxy
nasazenych jako sidecary vedle kazdé instance mikrosluzby. Tento piistup,
oznacovany jako sidecar pattern, umoziuje transparentni implementaci sitovych
funkei bez nutnosti modifikace kédu mikrosluzeb. Komunikace mezi mikro-
sluzbami prochdzi pres Envoy proxy, kterd zajistuje smérovani, load balan-
cing, circuit breaking a dalsi pokroéilé sifové funkce.

API Gateway, implementovana pomoci Consul API Gateway, slouzi jako

28

vstupni bod pro externi pozadavky a sméruje je na ptislusné mikrosluzby.
Tato komponenta podporuje ruzné protokoly véetné HTTP/1.1, HTTP/2 a
gRPC, coz umoznuje efektivni komunikaci s ruznymi typy klientu.

Pro zabezpecenou komunikaci s externimi sluzbami mimo Service Mesh
je implementovdna Terminating Gateway. Ta zajistuje terminaci mTLS a
preklad mezi zabezpecenou komunikaci uvnitt Service Mesh a potencidlné
nezabezpecenou komunikaci s externimi systémy. Toto feseni umoznuje mik-
rosluzbam bezpecné komunikovat s externimi API, databazemi nebo legacy
systémy.

Pro podporu real-time komunikace mezi klienty a serverem je vyuzivana
technologie SignalR, ktera poskytuje vysokouroviové abstrakce pro Web-
Sockets, Server-Sent Events a Long Polling. Tato technologie umoznuje efek-
tivni implementaci notifikaci, chatu a dalsich real-time funkci s minimalnimi
naroky na vyvoj.

Smérovani sifového provozu uvniti Kubernetes clusteru mimo Service
Mesh je realizovano prostirednictvim Kubernetes DNS poskytujictho service
discovery mechanismus. Kazda sluzba registrovana v Kubernetes je dostupna
pres DNS zaznam ve formatu <service-name>.<namespace>.svc.cluster.local,
coz umoznuje transparentni komunikaci mezi sluzbami bez znalosti fyzické

lokace.

3.4 Bezpecnost nasazeného ekosystému

Bezpecnost predstavuje kriticky aspekt navrzené architektury, zejména u
socialni platformy zpracovavajici citliva uzivatelskd data. Implementovany
bezpecnostni model zahrnuje nékolik vrstev ochrany.

Zabezpeceni komunikace je realizovéno prostiednictvim mutual TLS (mTLS),
kdy komunikujici strany vzajemné ovéruji identitu pomoci certifikati. Con-
sul Service Mesh automaticky zajisfuje vydavani, distribuci a rotaci certi-
fikatt pro sluzby. Tento mechanismus efektivné brani odposlouchéavani ko-

munikace a man-in-the-middle ttokum, coz je zasadni pro ochranu citlivych

29

uzivatelskych dat.

Access Control Lists (ACL) jsou implementovany na trovni Consulu pro
fizeni pristupu ke sluzbam a jejich API. Tento mechanismus umozinuje gra-
nuldrni definici oprdvnéni a zajistuje, Ze kazd4 sluzba mé pifstup pouze k
nezbytnym zdrojum.

Intentions v Service Mesh definuji povolené komunikaéni cesty mezi sluzbami.
kdy je komunikace mezi sluzbami povolena pouze pii explicitni definici.

Pro spravu tajemstvi a Sifrovacich klict je vyuzivan HashiCorp Vault
(KMS), ktery poskytuje centralizované tlozisté pro citlivé informace s me-
chanizmy pro fizeni pristupu a audit. Tato komponenta je klicova pro imple-
mentaci Sifrovani dat v klidu i pfi prenosu a bezpec¢nou spravu autentizac¢nich
udaju.

Certificate Manager zajistuje automatickou spravu SSL certifikatt v Ku-
bernetes clusteru. Tento nastroj eliminuje rizika spojena s manuélni spravou
certifikitu a zajistuje Sifrovdni veskeré externi komunikace pomoci platnych
certifikatu.

Network Policies definuji povolené komunikaéni cesty na trovni sitové
vrstvy, ¢imz poskytuji dalsi troven izolace a ochrany proti laterdlnimu po-

hybu pii kompromitaci nékteré komponenty systému.

3.5 Limitace prostredi

Navrzena architektura socidlni platformy Socigy vykazuje ptfes svou robust-
nost nékolik limitaci, které bude nutné adresovat v kontextu dlouhodobého
vyvoje a skalovani systému.

Hlavni technologickou vyzvou soucasné implementace je chybéjici nativni
podpora multi-port konfigurace ve stabilnich verzich Consul Service Mesh.
Tato limitace se projevuje zejména pii implementaci komplexnich komu-
nikac¢nich vzoru, kdy mikrosluzby potiebuji soucasné podporovat ruzné ko-

munikaéni protokoly (gRPC, HTTP/1.1, SignalR) bez piimé implementace

30

HTTPS na trovni aplikacniho kontejneru.

K prekonéni této bariéry bylo nutné integrovat Nginx proxy server jako
doplinkovou komponentu v kazdém kontejneru mikrosluzby. Nginx vysta-
vuje jeden port viditelny pro Envoy proxy a interné zajistuje smérovani
pozadavku mezi ruznymi porty uréenymi pro specifické komunika¢ni pro-
tokoly. Toto TesSeni sice efektivné obchazi zédkladni limitaci Service Mesh, ale
zaroven zvysuje komplexitu nasazeni a vytvari dodatecnou vypocetni rezii.

Dalsi vyznamnou limitaci souc¢asné implementace je absence Mesh Ga-
teway pro usnadnéni komunikace mezi vice Kubernetes clustery. Aktudlni ar-
chitektonicka konfigurace omezuje nasazeni systému na jeden cluster (Availa-
bility Zone), coz vyrazné limituje moznosti geografické distribuce a predstavuje
riziko z hlediska vysoké dostupnosti pii katastrofickém selhani datového cen-
tra.

Implementace Consul Service Mesh pfirozené generuje urcitou vypocetni
rezii vyplyvajici z nutnosti provozovat Envoy proxy paralelné s kazdou in-
stanci mikrosluzby. Tato rezie muze byt vyznamna zejména v prostredich s
omezenymi vypocetnimi zdroji nebo pii nasazeni velkého poctu mikrosluzeb
s minimalnimi pozadavky na vypocetni vykon.

Integrace s externimi systémy prostiednictvim Terminating Gateway predstavuje
potencialni vykonnostni uzké misto pii zvySeném objemu komunikace s ex-
ternimi sluzbami. Aktualni implementace neumoznuje automatické skalovani
Terminating Gateway na zakladé dynamického zatizeni, coz vyzaduje kon-
tinualni monitoring a ruc¢ni upravy konfigurace.

Architektura byla primérné optimalizovana pro nasazeni v cloudovém
prostredi. Migrace do on-premise infrastruktury nebo hybridniho feseni by
mohla vyzadovat vyznamné upravy zejména v oblastech automatického skalovani,

rozlozeni zatéze a service discovery.

31

3.6 Databazové reseni

Perzistenci dat v socidlni platformé Socigy zajistuje robustni databdzové
feSeni zalozené na PostgreSQL s vyuzitim Spillo a Patroni pro implementaci
vysoké dostupnosti. Jak je zndzornéno na obrazku 3.3, databazova architek-
tura je navrzena s durazem na spolehlivost, vykon a odolnost vuéi vypadkum.

PostgreSQL byl zvolen jako primarni databazovy systém diky pokrocilym
funkcim, véetné podpory komplexnich datovych typu, indexovani pomoci
GIN a GiST indext, které jsou zasadni pro efektivni vyhledavani v socidlnich
datech, a robustnimu transakénimu modelu zajistujicimu integritu dat. Schéma,
databaze bylo navrzeno s ohledem na specifické pozadavky socialni plat-
formy, zahrnujici entity jako uzivatelé, kruhy (circles), vztahy mezi uzivateli
a zpravy, coz umoznuje efektivni reprezentaci socidlnich vazeb a interakci.

Pro zajisténi vysoké dostupnosti je implementovana architektura Master-
Slave s vyuZitim streamovaci replikace, ktera zajisfuje kontinualni replikaci
dat z primarniho uzlu na replika¢ni uzly. Konfigurace zahrnuje jeden primarni
uzel (Master) a dva replikacni uzly (Replica), coz poskytuje redundanci dat
a moznost automatického failoveru pii vypadku primarniho uzlu.

Klicovou komponentou pro spravu architektury je Patroni, specializovany
nastroj pro orchestraci PostgreSQL clustertu. Patroni implementuje mecha-
nizmy pro monitoring stavu databazovych uzlu, detekci vypadku a automa-
tickou volbu nového primarniho uzlu z dostupnych replik. Proces failoveru
minimalizuje dobu vypadku pfi selhdni primarniho uzlu a zajistuje kontinu-
itu sluzeb.

Spillo, PostgreSQL operator pro Kubernetes, poskytuje integrac¢ni vrstvu
mezi databidzovym clusterem a Kubernetes ekosystémem. Komponenta zajistuje
automatizovanou spravu databazovych clustert, véetné provisioningu, zalohovani,
obnovy a skalovani.

Pro zajisténi konzistence dat v distribuovaném prostiedi byly implemen-
tovany transakcni mechanizmy a strategie pro feSeni konfliktu. Databazové
schéma vyuziva pokrocilé funkce PostgreSQL, jako jsou rozsiteni uuid-ossp

pro generovani unikatnich identifikatoru a pgtrgm pro efektivni fulltextové

32

vyhledavani.

Pravidelné zalohovani a tdrzba databéze jsou zajistény prostiednictvim
Kubernetes Cron Jobs. Konfigurace databaze je spravovana pomoci Kuber-
netes Config Maps, coz umoznuje centralizovanou spravu konfigura¢nich pa-
rametru a jejich dynamickou aktualizaci bez nutnosti restartu databazovych

instanci.

33

Kapitola 4

Detail implementace klicovych

komponent

4.1 Autentizace a bezpecnost

Implementace autentiza¢nich mechanismui a bezpecnostnich opatteni je klicovou
soucasti navrhu socidlni platformy Socigy. Systém vyuzivd moderni auten-
tizacni metody s durazem na zajisténi bezpecnosti uzivatelskych dat pri

soucasném zachovani intuitivnitho uzivatelského rozhrani.

4.1.1 Implementace Passkeys

Primarnim autentizacnim mechanismem jsou Passkeys zalozené na standardu
FIDO2, které poskytuji vysokou uroven zabezpeceni pti soucasném zjed-
noduseni procesu prihlasovani. Na webové platformé je funkcionalita rea-
lizovana prostiednictvim WebAuthn API, coz umoznuje piimou integraci s
biometrickymi senzory zafizeni a bezpeénostnimi kli¢i. (10)

Pro mobilni aplikaci vyvinutou v React Native Expo bylo nezbytné im-
plementovat vlastni nativni modul pro platformu Android. Serverova cast
autentizacniho systému vyuzivéa specializovanou knihovnu vyvinutou FIDO

Alliance pro validaci autentiza¢nich dat a spravu registrovanych zarizeni.

34

4.1.2 QR Code Sign-in

Alternativnim autentiza¢nim mechanismem je QR Code sign-in, ktery se v
soucasné dobé nachazi ve fazi implementace. Tento pristup umoznuje uzivatelum
prihlaseni do webové aplikace prostrednictvim naskenovani QR kodu mo-

bilnim zafizenim, na kterém jsou jiz autentizovani.

4.1.3 Vicefaktorova autentizace

Vyznamnym bezpec¢nostnim prvkem implementovaného systému je povinna
vicefaktorova autentizace (MFA), kterd je aktivovdna automaticky pii re-
gistraci nového uzivatele. Primarnim faktorem je email MFA, kdy systém
vyzaduje verifikaci emailové adresy pred dokonc¢enim registracniho procesu.
Déle je implementovana podpora pro Time-based One-Time Password (TOTP)
(11) jako alternativni MFA metoda.

4.1.4 Zarizenim orientovana autentizace

Autentizacéni systém je orientovan na zatizeni (device-oriented authentication),
coz prinasi nékolik zasadnich vyhod. Uzivatelé mohou spravovat sva auten-

tizovana zafizeni prostifednictvim dedikovaného rozhrani v nastaveni uctu,

véetné moznosti okamzitého odebrani pristupovych prav konkrétnimu zafizeni.
Tento piistup umoznuje implementaci pokrocilych bezpec¢nostnich politik na

urovni jednotlivych zafizeni a vyuziti autentizovanych zafizeni pro sekundarni

ucely, jako je autorizace citlivych operaci nebo implementace ptihlaseni po-

moci QR kodu.

4.1.5 Bezpecnostni mechanizmy na tirovni API

Na urovni API a prenosu dat jsou implementovana komplexni bezpeénostni
opatteni. Autentiza¢ni tokeny jsou ukladany v Secure, HttpOnly cookies, coz
eliminuje riziko jejich odcizeni prostiednictvim JavaScript kédu. Pro ochranu

proti Cross-Site Request Forgery (CSRF) utokum jsou implementovany Anti-

35

Forgery tokeny, které zajistuji, Zze pozadavky na API pochdzeji z legitimnich
zdroju.

Vyznamnym bezpec¢nostnim prvkem je implementace Cross-Origin Re-
source Sharing (CORS), kterd je realizovdna individudlné na urovni kazdé
mikrosluzby. Tento decentralizovany pristup byl zvolen z duvodu rozdilnych
pozadavku na piistupnost dat v ramci jednotlivych sluzeb. CORS politiky
jsou nastaveny tak, aby povolovaly ptistup pouze z relevantnich a ovérenych
domén, ¢imz se minimalizuje riziko neopravnéného ptistupu k API. Indi-
vidualni implementace CORS také umoznuje flexibilni pristup k budoucim
rozsitenim funkcionality, jako je naptiklad moznost embedovani prispévku
na externich webovych strankach, kdy specifické endpointy mohou mit méné
restriktivni CORS nastaveni.

Komunikace mezi klientem a serverem je zabezpecena prostiednictvim
TLS/SSL s vyuzitim modernich kryptografickych algoritmu. Pro zvysent
bezpecnosti webové aplikace jsou implementovany Content Security Policy
(CSP) a dalsi bezpe¢nostni hlavicky, které poskytuji ochranu proti riznym
typum utoku, vcéetné Cross-Site Scripting (XSS), clickjacking a data in-
jection. CSP definuje povolené zdroje pro nacitani skriptu, styla, obrazku

a dalsich typu obsahu, ¢imz minimalizuje riziko spusténi skodlivého kédu.

4.2 Mikroservisni ekosystém

Implementace mikroservisniho ekosystému predstavuje jddro navrzené socialni
platformy. Mikrosluzby jsou vyvinuty s vyuzitim ASP.NET AOT 8, ktery po-
skytuje vykonnostni optimalizace prostiednictvim kompilace Ahead-of-Time.
Architektura mikrosluzeb je zalozena na principu Dependency Injection, coz
umoznuje flexibilni spravu zavislosti a usnadnuje testovani jednotlivych kom-
ponent.

Komunikacni infrastruktura mikrosluzeb je realizovana prostiednictvim
kombinace nékolika protokolu - gRPC pro vysokovykonnou komunikaci mezi

sluzbami, SignalR pro real-time komunikaci a standardni HTTP/1.1 pro

36

REST API. Jadrem komunika¢ni vrstvy je Kestrel server, ktery poskytuje
vysoky vykon a nizkou latenci. Pro feSeni omezeni Consul Service Mesh v
oblasti multi-port konfigurace byl implementovan vlastni Dockerfile s inte-
grovanym Nginx, ktery funguje jako reverzni proxy. HTTP /1.1 a SignalR ko-
munikace je mapovéna na port 5000, HTTP /2 gRPC na port 5001, zatimco
Nginx poslouchd na portu 8080, ktery je nasledné vyuzivan Envoy proxy v

réameci Service Mesh.

4.2.1 Databazovy ORM mapper

Vyznamnym aspektem implementace mikroservisniho ekosystému je vyvoj
vlastniho PostgreSQL ORM mapperu, ktery byl nezbytny z divodu kompa-
tibility s AOT kompilaci. Entity Framework, standardni ORM framework pro
NET aplikace, neposkytuje plnou podporu pro AOT kompilaci, coz vedlo k
nutnosti implementace vlastniho feSeni pro objektové-relacni mapovani.

Vyvinuty mapper implementuje zakladni CRUD operace (Create, Read,
Update, Delete) a poskytuje typové bezpeéné rozhrani pro praci s databazovymi
entitami. Architektura mapperu je zalozena na generickych ttidach, které
umoznuji definovat mapovani mezi databazovymi tabulkami a doménovymi
objekty. Mapper vyuziva Npgsql jako nizkodroviiového poskytovatele pro ko-
munikaci s PostgreSQL databazi a implementuje vlastni mechanizmy pro
spravu pripojeni, transakce a mapovani vysledku dotazu.

Klicovou funkcionalitou mapperu je podpora pro kompilaci dotazi v dobé
sestaveni aplikace, coz je v souladu s principy AOT kompilace. Tato vlastnost
eliminuje rezii spojenou s dynamickou kompilaci dotazu za béhu a prispiva
k celkovému vykonu aplikace. Mapper také implementuje optimalizace pro
davkové operace a podporuje asynchronni piistup k databazi, coz je kritické
pro skalovatelnost mikrosluzeb.

Z hlediska bezpecnosti implementuje mapper parametrizované dotazy,
které efektivné brani SQL injection utokum. Mapper také poskytuje me-
chanizmy pro logovani a monitorovani databazovych operaci, coz usnadnuje

diagnostiku a optimalizaci vykonu.

37

4.2.2 Autentizacni middleware

V ramci mikroservisniho ekosystému byl implementovan specializovany au-
tentizacni middleware, ktery zajistuje ovéreni identity uZivateli a poskytuje
autentizacni kontext pro zpracovani pozadavku. Middleware funguje na prin-
cipu interceptoru, ktery zachytava prichozi pozadavky a provadi autentizaci
pred jejich predanim cilovym handlerum.

Na Auth mikrosluzbé funguje middleware lokalné prostiednictvim volani
vlastné vytvoreného interniho rozhrani ITokenService, které poskytuje me-
tody pro validaci a spravu autentizacnich tokenu. Toto FeSeni minimalizuje
sifovou komunikaci a optimalizuje vykon autentizaéniho procesu.

Na ostatnich mikrosluzbach je autentizace realizovana prostiednictvim
gRPC komunikace piimo s Auth mikrosluzbou. Pti ptichodu pozadavku mid-
dleware extrahuje autentizacni token, zasila jej prostifednictvim gRPC volani
do Auth mikrosluzby k validaci a nasledné priklada ziskana uzivatelska data
do HttpContextu. Tento pifstup zajistuje centralizovanou spravu autentizace

a konzistentni aplikaci bezpecnostnich politik napti¢ celym ekosystémem.

4.2.3 Middleware pro validaci internich pozadavku

Pro zabezpeceni komunikace mezi mikrosluzbami byl implementovan vlastni
middleware, ktery zajisfuje autentizaci a autorizaci internich pozadavki.
Ptvodni navrh poéital s vyuzitim mTLS certifikatu poskytovanych Envoy
Proxy, coz by umoznilo ovéreni identity volajici sluzby na zakladeé certifikatu.

V dusledku nutnosti implementace multi-port konfigurace a podpory ruznych
komunikacnich protokolu vsak bylo nezbytné prepnout Envoy Proxy do TCP
modu, ktery neposkytuje moznost predavani certifikatu v pozadavcich. Z
tohoto duvodu byl navrh middlewaru modifikovan a implementovan alterna-
tivni pristup zalozeny na OAuth klientech.

Nové teseni spociva ve vytvoreni OAuth klienta v Auth databazi pro
kazdou mikrosluzbu. Pii interni komunikaci middleware ovéruje validitu kli-

enta a jeho tajného klice prostfednictvim gRPC pozadavku zaslaného do

38

Auth mikrosluzby. Tento pifstup zajistuje bezpectnou komunikaci mezi mik-

rosluzbami i v prostiedi s omezenimi danymi TCP mdédem Envoy Proxy.

4.2.4 Middleware pro extrakci uzivatelskych dat

Pro zlepSeni uzivatelské zkuSenosti a zvySeni bezpecnosti byl implementovan
middleware, ktery analyzuje informace o klientském zafizeni a prohlizeci.
Middleware extrahuje fingerprint zatrizeni a UserAgent fetézec z prichozich
pozadavku a na zakladé téchto informaci poskytuje kontextova data do Http-
Contextu.

Ziskané informace jsou vyuzivany pro ruzné tucely, vcéetné detekce po-
tencidlné podezrelych prihlaseni, optimalizace uzivatelského rozhrani pro konkrétni

zalizeni a sbéru analytickych dat o pouzivanych zarizenich a prohlizecich.

4.2.5 Autentizacni mikroservisa

Autentizaéni mikroservisa zajistuje centralizovanou sprévu autentizace, au-
torizace a auditovani v celém systému. Jadrem mechanismu je implementace
standardu FIDO2, poskytujici bezpeéné ovérovani uzivateli bez tradi¢nich
hesel. Pro spravu pfihldseni a udrzovani stavu autentizace jsou vyuzivany
JWT (JSON Web Tokens).

Perzistence dat je zajisténa prostiednictvim dedikované auth_db databaze,
logicky oddélené od ostatnich mikroservisnich databazi. Toto feseni podpo-
ruje princip oddéleni zodpovédnosti a umoznuje nezavislou spravu auten-
tizacnich dat.

Implementace Passkeys predstavovala vyznamnou vyzvu, vyzadujici peclivou
integraci s FIDO2 standardem a optimalizaci uzivatelského zazitku napftic
ruznymi zafizenimi a prohlizeci. Ac¢koliv OAuth funkcionalita neni v souc¢asnosti
plné realizovana, databazové schéma jiz obsahuje ptipravu pro budouci inte-
graci této technologie.

Pro detailni pohled na strukturu databaze a konkrétni implementacni

detaily je v kapitole 9 uvedeno kompletni databazové schéma Autentizacni

39

mikroservisy.

4.2.6 Uzivatelska mikroservisa

Uzivatelska mikroservisa zajistuje spravu uzivatelskych profilt a vztaht mezi
uzivateli. Zahrnuje ukladéni a aktualizaci zdkladnich informaci o uzivatelich,
jako jsou jméno, piijmeni, e-mail a datum narozeni. Mikroservisa imple-
mentuje sofistikovany systém pro spravu ruznych typu vazeb mezi uzivateli,
véetné pratelstvi, sledovani nebo blokovani.

Data jsou ukladana v dedikované user_db databazi, jejiz schéma je op-
timalizovano pro efektivni dotazovani komplexnich vztahu mezi uzivateli.
Klicovou funkcionalitou je sprava uzivatelskych kruht (circles), umoznujici
organizaci kontaktu do logickych skupin s ruznymi irovnémi opravnéni.

Systém podporuje import a spravu osobnich kontaktu véetné mecha-
nismu pro parovani importovanych kontakt s existujicimi uzivateli plat-
formy. Bezpecnost a soukromi jsou zajistény granularnim systémem opravnéni,
ktery umoznuje uzivatelum ptesné kontrolovat ptistup k jejich osobnim in-
formacim. Dopliuje jej robustni systém pro detekci a prevenci nezadouciho

chovéni, véetné blokovani uzivatelu a reportovani nevhodného obsahu.

4.2.7 Obsahova mikroservisa

Obsahové mikroservisa zajistuje komplexni spravu obsahu a interakeci uzivatelt
na platformé. Implementuje robustni systém pro nahravani, ukladani a distri-
buci multimedidlniho obsahu, véetné obrazku, videi a textovych piispévki.
Ackoliv funkcionalita pro streamovani neni v soucasné implementaci plné
realizovana, architektura je ptripravena na budouci integraci této funkce.
Vyznamnym aspektem je systém kategorizace obsahu a spravy uzivatelskych
zdjmu, umoznujici efektivni organizaci a vyhledavani obsahu. Mikroservisa
zahrnuje zakladni implementaci obsahovych Al profili, které upravuji do-
porucované kategorie a zajmy, coz poskytuje zaklad pro budouci implemen-

taci pokrocilejsich algoritmu personalizace.

40

Data jsou ukladana v dedikované content_db databazi. Systém pro spravu
interakeci uzivatelu s obsahem zahrnuje funkce pro hodnoceni, komentovani
a sdileni piispévki, s durazem na vykon pii zpracovani velkého mnozstvi
soucasnych interakeci.

Architektura je navrzena s ohledem na budouci rozsiteni o pokrocilé me-
tody moderace obsahu vyuzivajici modely umeélé inteligence pro automatic-
kou detekci a filtraci potencidlné skodlivého obsahu. Tato planovand inte-
grace vyznamneé zvysi efektivitu moderacniho procesu a posili bezpecnost

uzivatelského prostiedi.

4.2.8 Pluginova mikroservisa

Pluginova mikroservisa zajistuje spravu plugint, jejich Zivotniho cyklu a
rozsititelnosti platformy. Jadrem je systém pro spravu celého procesu od
vytvareni pres publikovani az po distribuci plugint. Architektura implemen-
tuje sofistikované verzovani, které umoznuje vyvojarum publikovat aktuali-
zace pri zachovani kompatibility s existujicimi instalacemi. Systém podporuje
ruzné stavy publikace véetné beta verzi, pripravy, recenze a finalniho publi-
kovaného stavu.

Vyznamnou soucasti je lokaliza¢ni systém umoznujici pfizpusobeni plu-
ginu pro ruzné jazyky a regiony. Implementace podporuje ukladani lokali-
zovanych textu ve formatu JSON, coz poskytuje flexibilitu pti definici kom-
plexnich lokalizac¢nich struktur s validaci regionalnich kodi.

Data jsou uklddana v dedikované plugin_db s komplexni strukturou ta-
bulek pro metadata pluginu, verzi, instalaci, lokalizaci, assetu a uzivatelskych
dat. Databazové schéma vyuziva sofistikované indexovani pro optimalizaci
vykonu dotazi a zajisténi referencni integrity.

Systém spravy instalaci sleduje pluginy na trovni uzivatelu i zatizeni, coz
umoznuje instalaci na ruzna zafizeni s mechanismy pro monitoring stavu,
statistiky vyuziti a spravu aktualizaci. Bezpecénostni aspekty zahrnuji validaci
a verifikaci pluginu véetné kontroly integrity a detekce potencidlné skodlivého

kédu s ruznymi drovnémi verifikaéniho statusu.

41

Pro ukladani a distribuci binarnich souboru a assetu je implementovana
integrace s Cloudflare R2 Object Storage, zajistujici efektivni spravu WebAs-
sembly modult, ikon a dalsich souvisejicich souboru. Souc¢asti je také systém
hodnoceni a recenzi, ktery umoznuje uzivatelum poskytovat zpétnou vazbu

vyvojarum s mechanismy pro prevenci zneuziti.

4.3 Mobilni aplikace

Mobilni aplikace socidlni platformy Socigy je implementovana s vyuzitim
React Native Expo, coz umoznuje vyvoj multiplatformni aplikace s nativnim
vykonem. Aplikace zahrnuje klicové funkce socidlni sité, véetné zobrazeni
prispévku, spravy profilu, fizeni uzivatelskych kruhu, spravy vztahu a ob-
chodu s pluginy.

Pro optimalizaci vykonu a uzivatelského zazitku byly implementovany
pokrocilé techniky. Jednou z nich je vyuziti komponenty FlashList, ktera
predstavuje optimalizovanou verzi standardni FlatList komponenty. Flash-
List nabizf vy$s{ vykon a nizsi pamétovou narocénost pii renderovani dlouhych
seznamt, coz je klicové pro plynulé prochazeni prispévku a dalsich datovych
sad. Ackoliv FlashList neni vyuzit v celé aplikaci, jeho nasazeni v kritickych
castech vyznamneé prispiva k celkovému vykonu.

Dalsi vyznamnou optimalizaci je implementace cachovani obrazku pomoci
Expolmage. Tato komponenta vyuziva vykonné nativni knihovny SDWebl-
mage pro iOS a Glide pro Android, které zajistuji efektivni nac¢itani a uklad4ni
obrazki do mezipaméti. Diky tomu se vyrazné snizuje mnozstvi sifovych
pozadavku a zrychluje se zobrazeni jiz diive nactenych obrazku.

Pro spravu stavu aplikace byl zvolen pristup zalozeny na React Con-
texts. Toto feseni umoznuje efektivni sdileni dat mezi komponentami bez
nutnosti explicitniho predavani props skrze celou komponentovou hierarchii.
Implementace zahrnuje nékolik klicovych kontextu, jako jsou AuthContext
pro spravu autentizace, ThemeContext pro fizeni vzhledu aplikace, a dalsi

specializované kontexty pro spravu uzivatelskych dat a nastaveni.

42

Proces instalace pluginu v mobilni aplikaci je navrzen s ohledem na jed-
noduchost a bezpecnost. Uzivatel muze prochazet dostupné pluginy v inte-
grovaném obchodé, vybrat pozadovanou verzi a iniciovat instalaci. Samotna
"instalace”spociva v registraci uzivatele a zarizeni na serveru jako uzivatele
daného pluginu, bez nutnosti stahovani a spousténi kédu piimo v aplikaci.

Toto feSeni umoznuje centralni spravu pluginu a jejich opravnéni.

4.4 Webova aplikace

Webova verze aplikace Socigy je vyvinuta s vyuzitim frameworku Next.js,
ktery poskytuje vykonné nastroje pro server-side rendering a optimalizaci
vykonu. Funkcionalita webové aplikace zahrnuje stejné klicové prvky jako
mobilni verze, véetné zobrazeni prispévku, spravy profilu, fizeni uzivatelskych
kruhti a vztahu, a obchodu s pluginy.

Pro spravu stavu v webové aplikaci byl zvolen stavovy manazer Zustand.
Na rozdil od React Contexts pouzitych v mobilni aplikaci, Zustand nabizi
jednodussi API a lepsi vykonnost pii praci s komplexnimi stavy. Zustand
umoziuje vytvareni izolovanych ulozist stavu, coZ usnadiiuje testovani a
udrzbu kédu. Tato volba reflektuje specifické potieby webové aplikace a
odlisny ptistup k architektuie front-endu ve srovnani s mobilni verzi.

Webova aplikace také zahrnuje specializovanou sekci pro vyvojare plu-
ginu. Tato ¢ast poskytuje nastroje pro spravu pluginu, véetné editace me-
tadat, spravy verzi, sledovani logu, spravy lokalizaci a assets. Vyvojari maji
také pristup k analytickym datum o svych pluginech, véetné hodnoceni a
recenzi od uzivateli. Soucasti je i rozhrani pro spravu databaze pluginu s
prehledem o vyuziti limitu.

Pro zajisténi responzivniho designu a konzistentniho vzhledu napfic ruznymi
zafizenimi je vyuzit framework TailwindCSS. Tento utility-first CSS fra-
mework umoznuje rychly vyvoj responzivnich rozhrani a snadnou customizaci
designu.

Ackoliv soucasna implementace pluginu nezahrnuje jejich piimou inte-

43

graci do hlavni aplikace, je to planovano pro budouci iterace. Toto rozhod-
nuti bylo motivovano potrebou dukladné otestovat koncept a optimalizovat
architekturu pred plnou integraci. Starsi verze implementace, ktera zahrno-
vala pfimou integraci plugint, je k dispozici v ptilohach prace pro srovnani
a analyzu. (9, /client/native/app-old-iteration)

Obeé verze aplikace, mobilni i webov4, sdileji spole¢nou logiku pro klicové
funkce jako je zobrazeni prispévku, sprava profilu a uzivatelskych vztaht.
Tento pristup zajistuje konzistentni uzivatelsky zazitek napiic platformami

a zjednodusuje udrzbu a vyvoj novych funkei.

44

Kapitola 5

Ekosystém uzivatelskych

pluginu

Tato kapitola popisuje navrh a implementaci ekosystému uzivatelskych plu-
gint, ktery predstavuje jeden z klicovych inovativnich prvki navrzené socialni
platformy. Systém umoznuje rozsititelnost platformy prostifednictvim mo-
dulti tietich stran, pficemz zajistuje bezpecnost, stabilitu a konzistentni

uzivatelskou zkusenost.

5.1 Aplikaéni vrstva

Aplika¢ni vrstva pluginového systému poskytuje rozhrani mezi jadrem plat-
formy a uzivatelskymi pluginy. Tato vrstva implementuje mechanismy pro
spravu zivotniho cyklu pluginu, komunikaci mezi pluginy a platformou, a

zajistuje bezpecnou exekuci kédu tietich stran.

5.1.1 Verzovani API

Systém verzovani API predstavuje klicovy aspekt pluginového ekosystému,
ktery zajistuje dlouhodobou kompatibilitu a udrzitelnost. Implementovany

pristup umoznuje soucasny béh pluginu kompatibilnich s ruznymi verzemi

45

10

11

12

13

14

15

16

17

systémového API, coz eliminuje nutnost pravidelnych aktualizaci pluginu pti

zménach v zakladni platformé.

Verzovani je implementovano prostiednictvim sémantického verzovani,

kde pluginy specifikuji pozadovanou verzi API ve svém developerském roz-

hrani v aplikaci

Systém automaticky rozpoznava kompatibilni verze API a poskytuje plu-

ginu odpovidajici rozhrani. Tento mechanismus je implementovan v ttide

PluginCacheManager, ktera analyzuje pozadovanou verzi API a vybira nej-

vhodnéjsi implementaci:

private fun resolveBestVersion(requestedVersion: String,

—

}

availableVersions: List<String>): String? {

val baseVersion = if (requestedVersion.startsWith(""")) {
requestedVersion.substring(1)

} else {
requestedVersion

}

val requestedSemver = Semver(baseVersion,

<~ Semver.SemverType.NPM)

val rangeStart = requestedSemver

val rangeEnd = Semver ("${requestedSemver.major + 1}.0.0",

— Semver.SemverType.NPM)

return availableVersions

.map { Semver(it, Semver.SemverType.NPM) }
.filter { it.compareTo(rangeStart) >= 0 &&
< it.compareTo(rangeEnd) < 0 }
.maxByOrNull { it }

7.toString()

Tento piistup zajistuje zpétnou kompatibilitu a umoziiuje postupnou evoluci

API bez naruseni funkcnosti existujicich plugini.

46

10

11

12

13

14

15

16

17

18

19

20

21

5.1.2 Registrace a pousténi eventu

Systém uddlosti (events) umoznuje pluginum reagovat na akce uzivatelu a
zmény v aplikaci. Implementace zahrnuje mechanismy pro registraci poslu-
cha¢u udélosti, distribuci udalosti a jejich zpracovani v ramci pluginu.

Pro usnadnéni prace s udélostmi se specializuje ¢ast vyvinutého Rust fra-
meworku, ktery poskytuje vysokouroviové abstrakce pro registraci a zpra-

covani udalosti:

thread_local! {
pub(crate) static REGISTERED_EVENTS: Rc<RefCell<HashMap<String,
<~ Box<dyn FnMut(&UIEvent)>>>> =

< Rc::new(RefCell: :new(HashMap: :new()));

#[wasm_bindgen]
pub fn invoke_ui_event(id: String, event: String) {
let json_res = match
<, serde_json::from_str::<UIEvent>(event.as_str()) {
Ok(res) => res,
Err(e) => {
logging: :adv_error(
format! ("Failed to deserialize UIEvent -> {}",

< e).as_str(),

None,
false,
);
return;

}s;
REGISTERED_EVENTS.with(move |events| {

if let Some(listener) = events.borrow_mut().get_mut(&id) {

listener(&json_res) ;

47

22

23

24

10

11

12

13

14

15

16

17

18

19

20

21

22

23

B;

Tento kéd umoznuje registraci posluchacu udalosti a jejich vyvolani pfi in-
terakci uzivatele s komponentami pluginu. Uddlosti jsou serializovany do
formatu JSON a predavany mezi nativnim kédem a WebAssembly modu-
lem.

Na strané klienta je implementovan systém pro distribuci udalosti mezi

pluginy a jadrem aplikace:

const eventNamesArray: stringl[] = [
"onPointerEnter",
"onPointerEnterCapture",
// Dalsi typy uddlosti
1;
// ... renderVDOM()
const { type, events, children, key } = element;
if (events) {
Object.keys(events) .forEach((event) => {
if (eventNamesArray.includes(event)) {

const eventIlds = events[event];

// Internal event callback
const callback = (e: any) => {
const eventData = JSON.stringify({
type: event,
...e.nativeEvent,
B
eventIds.forEach((eventId) => {
uiRegistry.invokeUiEvent (pluginld, eventId, eventData);
B
};

48

24

25

26

27

28

29

30

31

32

10

11

// Props passed to the rendered component
if (props) {

props [event] = callback;
} else {

props = { [event]: callback };

}
B

Tento pristup umoznuje pluginum reagovat na udalosti uzivatelského roz-
hrani, jako jsou kliknuti, zmény rozmeéru nebo jiné interakce, coz poskytuje

bohaté moznosti pro implementaci interaktivnich komponent.

5.1.3 Dynamické uzivatelské rozhrani

Dynamické uzivatelské rozhrani ptredstavuje klicovou funkcionalitu plugi-
nového systému, kterd umoznuje pluginum definovat a vykreslovat vlastni
komponenty v ramci aplikace. Implementace je zalozena na konceptu virtualniho
DOM (VDOM), ktery umoznuje efektivni aktualizace uzivatelského rozhrani.
Vyvinuty Rust framework poskytuje JSX-podobnou syntaxi pro definici

uzivatelského rozhrani:

#[ui_component]

struct Page {
render_string: bool,
content: Option<PropStr>,

image_url: Option<PropStr>,

impl UIComponent for Page {
fn render (&mut self) -> Option<UIElement> {
ui! {

<View class_name="flex-1 flex b" on_layout={l|e| {

49

12

13

14

15

16

17

18

19

10

11

12

13

info!("OnLayout event was fired on Page. Event:

o {7, e);
13>
<Text class_name="text-2xl font-inter-bold
< text-foreground">Your watchlist</Text>
<Counter render_string={self.render_string}
— image_url={self.image_url.clone() .unwrap()}
— content={self.content.clone() .unwrap()} />
</View>

Tento kod definuje komponentu s vlastnostmi a metodou pro vykresleni,
ktera vyuziva vlastné vyvinuté makro ui! pro definici struktury uzivatelského
rozhrani. Framework automaticky prevadi tuto definici na virtudlni DOM re-
prezentaci, ktera je nasledné serializovana a predana do nativni aplikace.

Na strané klienta je implementovan systém pro vykreslovani komponent

definovanych pluginy:

export default function Dynamic({
id,
defaultElement,
props,
uiRegistry,
}: DynamicProps) {
const [vdom, dispatchChange] = useReducer(dynamicVdomReducer,

— undefined);

useEffect(() => {
const registeredPlugin = uiRegistry.getComponentPlugin(id) ;
if (!registeredPlugin) {

return;

90

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

const changeSubscription = SocigyWasm.addListener(
"onComponentChange",
(data) => {
if (!data.changes) return;
const changes: VDOMChange[] = JSON.parse(data.changes);
dispatchChange (changes) ;
3
)3

if (
ISocigyWasm.renderComponent (registeredPlugin, id,
< JSON.stringify(props))

) o

console.error("Failed to render dynamic component ${id}”);
X
return () => {
changeSubscription.remove();
3
}, [idD);

if (!vdom) {
return defaultElement;

}

return renderVDOM(vdom) ;

Tento kéd zajistuje vykresleni komponenty definované pluginem a jeji aktu-
alizaci pfi zménach. Systém vyuziva virtualni DOM pro optimalizaci vykonu

a minimalizaci poc¢tu aktualizaci redlného DOM.

51

10

11

12

13

14

15

16

17

5.2 Pluginova vrstva

Pluginova vrstva zajistuje bezpeéné spousténi kédu tietich stran a poskytuje
rozhrani pro interakci s jadrem aplikace. Tato vrstva je implementovana s
vyuzitim WebAssembly, coz umoznuje efektivni a bezpeéné provadéni kodu

v sandboxovaném prostiedi.

5.2.1 Sandoxing u nativnich zarizeni

Implementace sandboxingu na nativnich zafizenich predstavuje vyznamnou
technickou vyzvu, zejména na mobilnich platformach. Pro feseni tohoto problému
byl vyvinut specializovany nativni modul pro Android, ktery umoznuje bezpecné
spousténi WebAssembly kédu v izolovaném prostiedi.

Modul SocigyWasm implementuje rozhrani mezi nativnim kédem a WebAs-

sembly moduly:

class SocigyWasmModule : Module() {

private final var PluginCacheManager: PluginCacheManager? = null;

override fun definition() = ModuleDefinition {

Name ("SocigyWasm")

OnCreate() {
SocigyWasmExceptions.setSendEvent (: :sendEventWrapper) ;
try {

PluginCacheManager = PluginCacheManager (getContext(),
< ::sendEventWrapper) ;
} catch (e: Exception) {
sendEvent ("onFatal", bundleOf(
"message" to "FATAL_ERR - " + e.toString(),
"uiDelay" to O
)

52

18

20

21

22

// Definice API pro komuntikaci s React Native
/o

Tento modul poskytuje rozhrani pro nacitani, inicializaci a spousténi
WebAssembly modulu v ramci React Native aplikace. Implementace vyuziva
WebView jako runtime pro WebAssembly, coz zajistuje kompatibilitu s vétsinou
Android zafizeni.

Klicovym aspektem implementace je izolace kodu pluginu, ktera je zajisténa
prostiednictvim WebAssembly sandboxu. WebAssembly poskytuje bezpecnostni
model zalozeny na linedrni paméti a omezeném piistupu k hostitelskému
prostiedi, coz efektivné brani neopravnénému pristupu k systémovym zdrojum.

Piistup k funkcionalitdm platformy je Tizen prostifednictvim explicitné

exportovanych funkei, které jsou dostupné pluginum:

WebView!!.addJavascriptInterface(ISocigyLogging(sendEvent),

— "SocigyLogging");

WebView!!.addJavascriptInterface(ISocigyInternal (sendEvent),

— "SocigyInternal");

WebView!!.addJavascriptInterface(ISocigyUtils(sendEvent),

< "SocigyUtils");

WebView!!.addJavascriptInterface(ISocigyPermissions(sendEvent),
"SocigyPermissions") ;

WebView!!.addJavascriptInterface(ISocigyUI(sendEvent), "SocigyUI");

Tento pristup umoznuje piresnou kontrolu nad tim, k jakym funkciona-
litdm maji pluginy ptistup, a implementaci systému opravnéni, ktery umoznuje

uzivatelim kontrolovat, jaké akce mohou pluginy provadeét.

93

10

11

12

13

14

15

5.3 UI

Uzivatelské rozhrani pluginového systému poskytuje mechanismy pro defi-
nici, registraci a vykreslovani komponent definovanych pluginy. Tato c¢ast
systému zajistuje integraci plugint do uZivatelského rozhrani aplikace a po-

skytuje konzistentni uzivatelskou zkusenost.

5.3.1 Definice komponentt a jejich registrace

Systém pro definici a registraci komponent umoznuje pluginim vytvaret
vlastni uzivatelské rozhrani, které je integrovano do aplikace. Implementace
zahrnuje mechanismy pro definici komponent, jejich registraci v ramci apli-
kace a spravu jejich zivotniho cyklu.

Definice komponent v ramci pluginu je realizovana prostrednictvim vy-
vinutého Rust frameworku, ktery poskytuje vysokouroviové abstrakce pro

tvorbu uzivatelského rozhrani:

#[ui_component]

struct Counter {
render_string: bool,
content: PropStr,

image_url: PropStr,

impl UIComponent for Counter {
fn render (&mut self) -> Option<UIElement> {
ui! {

<View class_name="flex-1 flex-row items-center

— justify-center">
<Text>{self.content.to_string()}</Text>
<Image source={{ uri: self.image_url.to_string() }}
— style={{ width: 100, height: 100 }} />

</View>

o4

16

17

Tento kod definuje komponentu s vlastnostmi a metodou pro vykresleni,
ktera vyuziva makro ui! pro definici struktury uzivatelského rozhrani. Kom-

ponenta je nasledné registrovana v ramci aplikace:

let component_id = "2368bb7a-1021-49d1-85£3-7049fb15abed";

register_component: : <MyComponent>(&component_id) ;

Na strané klienta je implementovan systém pro registraci a spravu kom-

ponent:

private internal_registerComponent(data: ComponentBasicEventData) {
this.components.set(data.componentId, data.pluginId);
let registered = this.plugins.get(data.pluginId);
if (lregistered) this.plugins.set(data.pluginId,
— [data.componentId]);
else {
registered.push(data.componentId);

this.plugins.set(data.pluginld, registered);

Tento kéd zajistuje registraci komponenty v rdmeci aplikace a jeji asociaci s
prislusnym pluginem. Registrované komponenty jsou nasledné dostupné pro

vykresleni v ramci aplikace.

5.3.2 Renderovani komponenti

Systém pro vykreslovani komponent zajistuje efektivni vykresleni uzivatelského

rozhrani definovaného pluginy. Implementace je zalozena na konceptu virtudlniho

DOM, ktery umoznuje efektivni aktualizace uzivatelského rozhrani.
Vykreslovani komponent je realizovano prostrednictvim specializovaného

rendereru, ktery prevadi virtualni DOM reprezentaci na nativni komponenty:

95

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

function

element: UIElement | undefined,

uiRegi
plugin
): React

if ('element) return undefined;

else if (typeof element === "string") return

— <T

const { type, events, children, key } = element;

let pr

const Component = getElementByType (type) ;

const

renderVDOM(x, uiRegistry, pluginId)

)

renderVDOM(

stry: UIRegistry,
Id: string

.JSX.Element | undefined {

ext>{e1ement}<

ops = { ...element.props };

renderedChildren = children?.map((x) =>

if (type == "Fragment") {

return <Component children={renderedChildren} />;

if (events) {

// Events...
}
if (type == "External") {
return (
<Component

/>

key={element.key}
{...props}

children={renderedChildren}

uiRegistry={uiRegistry}

o6

33

34

35

36

37

38

39

10

11

12

13

14

15

return (
<Component key={key} {...props} children={renderedChildren} />
)3
}

Tento kéd prevadi virtudlni DOM reprezentaci na nativni React kompo-
nenty, které jsou nasledné vykresleny v ramci aplikace. Systém podporuje
hierarchické komponenty, vlastnosti a udalosti, coz umoznuje vytvareni kom-

plexniho uzivatelského rozhrani.

Optimalizace

Pro zajisténi optimalniho vykonu pti vykreslovani komponent definovanych
pluginy byly implementovany ruzné optimalizacni techniky. Klicovou opti-
malizaci je vyuziti virtudlntho DOM, ktery umoznuje minimalizovat pocet

aktualizaci redlného DOM.

function dynamicVdomReducer (
state: UIElement | undefined,
actions: VDOMChange[]
): UIElement | undefined {
return produce(state, (draft) => {
if (typeof draft === "string") return;

else if (!draft) return actions[0].element;

actions.forEach((action) => {
switch (action.type) {
case "addElement": {
/e
}
case "replaceElement": {

/S

o7

16

18

19

20

21

22

23

24

}
// Dal3t typy zmén
}
1)

return draft;

B;

Tento kod implementuje reducer pro aplikaci zmén na virtualni DOM. Systém
podporuje ruzné typy zmén, jako je pridani, odstranéni nebo aktualizace ele-
mentu, coz umoznuje efektivni aktualizace uzivatelského rozhrani bez nut-
nosti prekresleni celého stromu.

Dalsi optimalizaci je vyuziti WebAssembly pro vykonné zpracovani dat
a logiky na strané pluginiu. WebAssembly poskytuje vykon blizky nativnimu
kédu, coz umoznuje efektivni implementaci komplexnich algoritmu a zpra-

covani dat v ramci pluginu.

o8

Kapitola 6

Monitoring a benchmarking

6.1 Monitorovani a logovani

Efektivni monitorovani a logovani predstavuje klicovy aspekt spravy kom-
plexni mikroservisni architektury socialni platformy Socigy. Pro zajisténi ro-
bustniho dohledu nad systémem byla implementovana specializovana moni-
torovaci infrastruktura zalozena na modernich open-source nastrojich.

Jadrem monitorovaciho systému je stack slozeny z Grafany, Promethea
a Loki, ktery bézi v dedikovaném namespace v ramci Kubernetes clusteru,
avSak mimo Consul Service Mesh. Toto architektonické rozhodnuti zajistuje
nezavislost monitorovacich komponent na monitorovaném prostredi, coz eli-
minuje potencialni kaskadové selhani v pripadé problému s Service Mesh.

Prometheus slouzi jako primarni nastroj pro sbér a ukladani metrickych
dat z ruznych komponent systému. V implementovaném feseni Prometheus
dynamicky objevuje monitorované cile prostifednictvim Kubernetes API, coz
umoznuje automatické pridavani novych instanci mikrosluzeb do monitoro-
vactho systému bez nutnosti manudalni konfigurace. Pro kazdou mikrosluzbu
jsou exponovany standardizované metriky zahrnujici vyuziti CPU, paméti,
latenci pozadavku a pocet zpracovanych transakei.

Loki dopliuje monitorovaci infrastrukturu jako skalovatelny systém pro

agregaci a analyzu logu. Na rozdil od tradi¢nich feseni pro spravu logu, Loki

99

neindexuje obsah logu, ale pouze metadata, coz vyznamneé snizuje naroky na
ulozisté a vypocetni zdroje. Implementace zahrnuje standardizovany format
logti napfi¢ vSemi mikrosluzbami, coz usnadnuje jejich analyzu a korelaci.
Logy jsou strukturovany v JSON formatu a obsahuji kontextové informace
jako ID pozadavku, ID uzivatele a dalsi relevantni metadata, coz umoznuje
efektivni trasovani pozadavku napfic distribuovanym systémem.

Grafana slouzi jako centralni vizualizacni platforma, kterd integruje data
z Promethea a Loki do ptehlednych dashboardu. Tento ptistup umoziiuje
komplexni pohled na vykon a zdravi celého mikroservisniho ekosystému.

Pro monitorovani Kubernetes clusteru jsou vyuzivany specializované ex-
portery, které poskytuji detailni pohled na stav jednotlivych uzlu, podu a
dalsich Kubernetes objekti. Tyto metriky jsou integrovany do centralniho
monitorovaciho systému, coz umoznuje korelaci problému na turovni aplikace
s potencidlnimi problémy na trovni infrastruktury.

Consul Service Mesh poskytuje dodatecnou vrstvu monitorovacich dat
prostfednictvim integrovanych metrik o komunikaci mezi sluzbami. Tyto me-
triky zahrnuji latenci, propustnost a chybovost jednotlivych volani mezi mik-
rosluzbami, coz umoznuje identifikaci tizkych hrdel a problematickych sluzeb

v ramci distribuovaného systému.

6.2 Benchmarking

Benchmarking predstavuje kritickou soucast vyvojového procesu socialni plat-
formy Socigy, zejména v kontextu pluginového systému, ktery musi efektivné
zpracovavat dynamické uzivatelské rozhrani a interakce. V ramci vyvoje byly
provedeny rozsahlé vykonnostni testy zameérené na optimalizaci klicovych
komponent systému.
Vyznamnym aspektem benchmarkingu byla evaluace ruznych implementacnich

pristupu pro pluginovy systém. Puvodni implementace zalozend na Assem-
blyScript dosahovala v zatézovych testech vykonu priblizné 16 000 snimku za

sekundu (fps). Tato metrika reprezentuje rychlost, s jakou je systém schopen

60

generovat aktualizace virtudlntho DOM a ptipravovat JSON reprezentace
pro vykresleni uzivatelského rozhrani, bez zapocitani ¢asu potiebného pro
skutecné vykresleni na obrazovku.

Nésledna reimplementace pluginového systému v jazyce Rust pfinesla
dramatické zlepseni vykonu, dosahujici az 200 000 fps ve stejnych testo-
vacich podminkach. Toto vice nez dvanactinasobné zvyseni vykonu lze pricist

nékolika faktorum:

o Efektivnéjsi sprava paméti v Rustu ve srovnani s AssemblyScriptem

e Optimalizovand implementace virtudlntho DOM s minimalnimi rezijnimi

naklady
o Efektivnéjsi serializace a deserializace JSON struktur

e VylepSeny algoritmus pro detekci zmén a minimalizaci aktualizaci

Benchmarking zahrnoval také méreni latence pti zpracovani uzivatelskych
interakci, jako jsou kliknuti, zmény rozméru nebo jiné udalosti. Rust imple-
mentace dosahla prumérné latence pod 5 ms, coz je hluboko pod prahem 100
ms, ktery je povazovan za hranici pro vniméani okamzité reakce uzivatelského
rozhrani.

Kromé vykonnostnich testu pluginového systému byly provedeny také
zatézové testy mikroservisni architektury jako celku. Tyto testy simulovaly
vysoké zatizeni s tisici soucasnych uzivatelu a meéfily schopnost systému
skalovat a udrzet konzistentni vykon. Vysledky ukazaly, ze implementovana
architektura je schopna efektivné skalovat horizontdlné a udrzet stabilni la-
tenci i pii vysokém zatizeni.

Benchmarking odhalil nékolik potencidlnich tizkych hrdel v systému, predevsim
v oblasti databazovych operaci a mezisluzbové komunikace. Na zakladé téchto
zjisténi byla implementovana fada optimalizaci. Klicovym vylepsenim bylo
zavedeni pokrocilého connection poolingu pro databdzové operace, coz vyrazné
snizilo latenci a zvysilo propustnost systému. Dalsi planovanou optimalizaci

je implementace distribuovaného cachovani ¢asto pristupovanych dat pomoci

61

Redis. Toto feseni ma potenciadl vyznamné redukovat zatéz na priméarni da-
tabazi a zrychlit odezvu systému. Ackoliv z ¢asovych duvodu nebylo Redis
cachovani dosud plné implementovano, predbézné analyzy naznacuji, ze by
mohlo pfinést az 30% zlepSeni v rychlosti odezvy pro nejcastéji pozadovand
data.

Vysledky benchmarkingu potvrzuji, ze zvoleny technologicky stack a im-
plementacni ptistupy poskytuji solidni zaklad pro vykonnou a skédlovatelnou
socialni platformu. Zejména prechod na Rust pro implementaci kritickych
komponent pluginového systému se ukazal jako klicové rozhodnuti pro dosazeni

vynikajiciho vykonu pfi zpracovani dynamického uzivatelského rozhrani.

62

Kapitola 7

Diskuze a vyhodnoceni

vysledkii

V této kapitole se zamérim na zhodnoceni dosazenych vysledkii, porovnani
implementovaného feSeni s existujicimi alternativami a identifikaci omezeni

soucasné implementace spolu s navrhy na budouci rozvoj.

7.1 Hodnoceni dosazenych vysledku

Implementace socialni platformy Socigy predstavuje komplexni technologické
reSeni, které tuspésné adresuje fadu identifikovanych nedostatku existujicich
socialnich siti. Pii hodnoceni dosazenych vysledku je tfeba zohlednit nékolik
aspektu.

Z hlediska frontend implementace bylo dosazeno funkéniho uzivatelského
rozhrani, které demonstruje zakladni koncept platformy. Vyuziti React Na-
tive Expo pro mobilni aplikaci a Next.js pro webovou aplikaci umoznilo vy-
tvorit multiplatformni feseni s konzistentni uzivatelskou zkusenosti. Ackoliv
soucasna implementace Ul/UX nedosahuje vSech puvodné zamyslenych cilu,
jako je naptiklad podpora dokovacich tabu a plnohodnotny multitasking na
webové platformeé, poskytuje solidni zaklad pro dalsi rozvoj.

Mikroservisni architektura implementovand na platformé Kubernetes prokazala

63

svou efektivitu pri feseni problému skalovatelnosti a modularity. Implemen-
tace zahrnuje ¢tyti klicové mikrosluzby (Auth, User, Content, Plugin), které
spolecné poskytuji robustni zédklad pro funkcionalitu socialni platformy. Soucasna
implementace je omezena na jeden Kubernetes cluster, coz limituje moznosti
geografické distribuce, nicméné architektura je navrzena s ohledem na bu-
douci rozsiteni do multi-cluster prostiedi.

Vyznamnym tspéchem je implementace pluginového systému zalozeného
na WebAssembly, ktery umoznuje bezpecné spousténi kédu tietich stran v
sandboxovaném prostfedi. Ackoliv integrace pluginu do hlavni aplikace ne-
byla z casovych duvodu dokoné¢ena, byla vytvorena kompletni infrastruktura
pro vyvoj, distribuci a spravu pluginu, véetné vlastniho Rust frameworku
pro vyvoj pluginu s podporou JSX-podobné syntaxe.

Z bezpecnostniho hlediska bylo dosazeno vyznamného pokroku imple-
mentaci modernich autentiza¢nich mechanismu, vcéetné podpory Passkeys
(FIDO2) a vicefaktorové autentizace. Implementace mTLS v rdamci Service
Mesh zajistuje zabezpecenou komunikaci mezi mikrosluzbami. Planovand in-
tegrace HashiCorp Vault pro spravu tajemstvi a Sifrovacich kli¢i nebyla z
casovych duvodu plné realizovana, ackoliv infrastruktura pro jeho nasazeni
byla pripravena.

Monitoring a observabilita systému byly zajistény implementaci stacku
Grafana, Loki a Prometheus, ktery poskytuje komplexni nastroje pro sle-
dovani vykonu a detekci anomalii. Tato infrastruktura je klicova pro zajisténi

spolehlivého provozu a proaktivni identifikaci potencialnich problému.

7.2 Porovnani s existujicimi reSenimi

Pti porovnani implementovaného feseni s existujicimi socidlnimi platformami
je patrnych nékolik vyznamnych rozdilu a inovaci.

Z technologického hlediska se Socigy odlisuje od existujicich platforem im-
plementaci modernich autentiza¢nich mechanismu. Zatimco platformy jako

Instagram a Facebook stéale spoléhaji primarné na tradi¢ni hesla doplnéna

64

dvoufaktorovou autentizaci, Socigy implementuje podporu Passkeys zalozenych
na standardu FIDO2, coz poskytuje vyssi iroven zabezpeceni pii soucasném
zjednoduseni procesu prihlasovani.

Vyznamnou inovaci oproti existujicim fesenim je implementace zafizenim
orientované autentizace, ktera poskytuje uzivatelim vétsi kontrolu nad pristupem
k jejich uc¢tum. Tento pristup umoznuje uzivatelum spravovat sva auten-
tizovana zafizeni a v pripadé potieby okamzité odebrat pristupova prava
konkrétnimu zarizeni bez nutnosti ménit prihlasovaci idaje pro vSechna ostatni
zafizeni.

Z hlediska uzivatelského rozhrani sou¢asnd implementace Socigy zaostava
za vysoce optimalizovanymi rozhranimi dominantnich platforem, které inves-
tovaly zna¢éné prostiedky do vyvoje a testovani UI/UX. Nicméné, koncept
podpory dockovacich tabu a multitaskingu na webové platformé predstavuje
potencialni vyhodu oproti existujicim fesenim, ktera tyto funkce typicky ne-

podporuji.

7.3 Omezeni implementace a navrhy na bu-

douci rozvoj

Soucasna implementace socidlni platformy Socigy ma nékolik omezeni, ktera
predstavuji ptilezitosti pro budouci rozvoj.

Jednim z hlavnich omezeni je absence plné integrace pluginu do hlavni
aplikace. Ackoliv byla vytvorena kompletni infrastruktura pro vyvoj a dis-
tribuci plugint, jejich integrace do uzivatelského rozhrani nebyla z casovych
duvodu dokoncena. Budouci vyvoj by se mél zamérit na dokonceni této in-
tegrace, coz by umoznilo uzivatelum plné vyuzivat potencidl pluginového
systému.

Z bezpecnostniho hlediska predstavuje vyznamné omezeni netiplna imple-
mentace HashiCorp Vault pro spravu tajemstvi a Sifrovacich klicu. Ackoliv
infrastruktura pro nasazeni Vaultu byla pfipravena, jeho plna integrace s

ostatnimi komponentami systému nebyla dokoncena. Budouci vyvoj by se

65

mel zamérit na dokonceni této integrace, coz by poskytlo robustni feSeni pro
spravu citlivych informaci.

Pro optimalizaci vykonu by bylo vhodné implementovat distribuované ca-
chovani s vyuzitim Redis, coz by mohlo vyznamné snizit latenci a zvysit pro-
pustnost systému. Tato optimalizace by byla zvlasté prinosna pti skdlovani
platformy na vétsi pocet uzivatelu.

Dalsim smérem budouciho rozvoje by mohla byt implementace pokrocilych
algoritmu pro personalizaci obsahu, které by poskytovaly uzivatelim rele-
vantnéjsi obsah pti zachovani transparentnosti a kontroly. Toto by mohlo
zahrnovat implementaci systému pro moderaci obsahu s vyuzitim modela
umélé inteligence, coz by zvysilo bezpecénost platformy a kvalitu uzivatelského
prostiedi.

Z hlediska rozsititelnosti pluginového systému by bylo vhodné implemen-
tovat pokrocilejsi mechanismy pro spravu opravnéni a monitorovani vykonu
pluginu. Toto by mohlo zahrnovat implementaci systému pro dynamické
pridélovani zdroju pluginum na zakladé jejich vyuziti a implementaci po-
krocilych metrik pro sledovani vykonu a stability plugint.

Implementace téchto vylepseni by vyznamneé zvysila konkurenceschopnost
platformy Socigy a poskytla by uzivatelum inovativni a bezpeéné prostiedi

pro socialni interakce v digitalnim prostoru.

66

Kapitola 8
Zaveér

8.1 Shrnuti klicovych poznatku

Tato prace predstavila navrh a implementaci moderni socidlni platformy So-
cigy, ktera tesi identifikované nedostatky existujicich feseni prostrednictvim
inovativniho piistupu k architektute, bezpecnosti a rozsititelnosti. Dosazené
vysledky demonstruji potencial zvolenych technologickych feseni pro vytvoreni
robustni a uzivatelsky orientované socidlni sité.

Implementace mikroservisni architektury na platformé Kubernetes se ukazala
jako vhodné volba pro zajisténi skalovatelnosti a modularity systému. Ku-
bernetes poskytl robustni zaklad pro orchestraci kontejnerizovanych aplikaci,
coz umoznilo efektivni spravu, skélovani a nasazeni jednotlivych mikrosluzeb.
Vyuziti Service Mesh pomoci HashiCorp Consul ptineslo vyznamné vyhody
v oblasti zabezpecené komunikace mezi sluzbami a centralizované spravy
sifovych politik.

V oblasti frontendu bylo dosazeno vyznamného pokroku implementaci
multiplatformniho feSeni s vyuzitim React Native Expo pro mobilni aplikace
a Next.js pro webovou aplikaci. Tento piistup zajistil konzistentni uzivatelskou
zkuSenost napfi¢ ruznymi zafizenimi a platformami, pficemz umoznil efek-
tivni sdileni kédu mezi jednotlivymi implementacemi.

Nejvyznamnéjsim piinosem prace je implementace pluginového systému

67

zalozeného na WebAssembly, ktery umozinuje bezpecné spousténi kodu tietich
stran v sandboxovaném prostiedi. Vyvinuty Rust framework pro tvorbu plu-
ginu s podporou JSX-podobné syntaxe vyrazné zjednodusuje vyvoj rozsireni
a poskytuje vyvojarum intuitivni nastroje pro tvorbu uzivatelského rozhrani.
Benchmarking prokézal vynikajici vykon Rust implementace, ktera dosahuje
az 200 000 fps pii zpracovani virtualntho DOM, coz predstavuje vice nez
dvanactinasobné zlepseni oproti puvodni AssemblyScript implementaci.

Z bezpecnostniho hlediska bylo dosazeno vyznamného pokroku imple-
mentaci modernich autentiza¢nich mechanismu, vcéetné podpory Passkeys
(FIDO2) a vicefaktorové autentizace. Tento pristup eliminuje rizika spo-
jena s tradiénimi hesly a poskytuje uzivatelum vyssi droven zabezpeceni pii

soucasném zjednoduseni procesu prihlasovani.

8.2 Doporuceni pro budouci vyzkum a praxi

Na zakladé zkusenosti ziskanych béhem vyvoje platformy Socigy 1ze formu-
lovat nékolik doporuceni pro budouci vyzkum a praxi v oblasti modernich
socialnich siti.

Prioritou pro dalsi vyvoj by méla byt plna integrace pluginového systému
do hlavni aplikace, coz by umoznilo uzivatelum plné vyuzivat potencial rozsiritelnosti
platformy. Soucasné by bylo vhodné implementovat pokrocilejsi mechanismy
pro spravu opravnéni a monitorovani vykonu pluginu, véetné systému pro
dynamické ptidélovani zdroju na zakladé jejich vyuziti.

Vyznamnou oblasti pro budouci vyzkum je implementace multi-cluster
feSeni s vyuzitim Mesh Gateway, které by umoznilo transparentni komunikaci
mezi sluzbami nasazenymi v ruznych clusterech a regionech. Tento piistup by
vyznamneé zvysil dostupnost a odolnost systému vuci vypadkum jednotlivych
datovych center.

7 hlediska uzivatelského rozhrani existuje prostor pro implementaci po-
krocilych funkci jako jsou dockovaci taby a multitasking na webové platforme,

coz by poskytlo unikatni uzivatelskou zkuSenost odlisujici se od existujicich

68

feSeni.

Pro optimalizaci vykonu by bylo vhodné implementovat distribuované ca-
chovéni s vyuzitim Redis, coz by mohlo vyznamné snizit latenci a zvysit pro-
pustnost systému. Tato optimalizace by byla zvlasté prinosna pti skdlovani
platformy na vétsi pocet uzivatelu.

Dalsi smér vyzkumu by se mél zamérit na inovativni piistupy k socidlnim
interakcim, zejména na koncept uzivatelskych kruhu (circles), ktery posky-
tuje flexibilngjsi a granularni kontrolu nad sdilenim obsahu a soukromim.
Tento pristup by mohl byt dale rozvinut implementaci algoritmu pro au-
tomatické doporucovani relevantnich kruhu na zakladé vzorcu interakci a
zdjmu uzivatelu.

V oblasti bezpecnosti by bylo vhodné dokonéit integraci HashiCorp Vault
pro spravu tajemstvi a sifrovacich kli¢u, coz by poskytlo robustni feseni pro
spravu citlivych informaci. Souc¢asné by meél byt vyvinut pokrocilejsi systém
pro detekci a prevenci neopravnéného pristupu, véetné implementace beha-
vioralni analyzy pro identifikaci potencialné podeztelych aktivit.

Implementace téchto doporuceni by vyznamné zvysila konkurenceschop-
nost platformy Socigy a poskytla by uzivatelim inovativni a bezpecné prostiedi

pro socialni interakce v digitalnim prostoru.

69

Kapitola 9
Prilohy

Veskeré prilohy a dodateéné materidly muzete najit v nasledujicim GitHub

repozitari ve slozce /schemas

70

https://github.com/WailedParsley36/socigy-soc
https://github.com/WailedParsley36/socigy-soc

Slovnik

Cluster Seskupeni uzlu (nodes) v Kubernetes, které spolecné provozuji kon-
tejnerizované aplikace a zajistuji jejich skdlovani, sprdvu a dostupnost.
17

ConfigMap Objekt v Kubernetes umoznujici ukladani konfiguracnich dat
oddeélené od kontejnerovych aplikaci. 17

Docker Swarm Alternativni orchestrator kontejnertu od Dockeru, nabizejici

jednodussi, ale méné Skdlovatelnou spravu oproti Kubernetes. 18

Ingress Objekt v Kubernetes, ktery umoznuje smérovani HT'TP a HT'TPS

provozu k sluzbam v clusteru na zakladé pravidel. 17

IW Informational Warfare. 11

Kubernetes Platforma pro orchestraci kontejnerizovanych aplikaci, umozinujici

efektivni skalovani, automatizovanou spravu a nasazeni mikroservis. 17

Mikroservisy Architektonicky styl, ve kterém je aplikace rozdélena na mensi,

nezavislé sluzby komunikujici mezi sebou. 18

NetworkPolicy Mechanismus v Kubernetes pro definici pravidel sifové ko-

munikace mezi jednotlivymi komponentami clusteru. 17

Orchestrace Automatizovana sprava nasazovani, skalovani a provozu kon-

tejnerizovanych aplikaci. 17

71

NS

vam prihlasit se pouhym otiskem prstu, skenem obli¢eje nebo zamkem

obrazovky. 12, 13

Secret Bezpecny zpusob spravy citlivych informaci, jako jsou hesla, OAuth
tokeny nebo SSH klice, v Kubernetes. 17

YouTube Socialni platforma na sdileni online video obsahu, vlastnéna spolecnosti
Google. 11, 72

YouTube Kids Oddeélend platforma od YouTube, uréend pro déti s velice

zékladni ochranou proti nevhodnému obsahu. 12

72

Literatura

1. KEPIOS. Global Social Media Statistics [https://datareportal.com/
social-media-users]. DataReportal, 2025. Datum citovani: 21. Unora
2025.

2. POWELL, Nicole. Social Media Algorithms: How to Crack the Code
in 2025 |[https://www .halconmarketing . com/ post /cracking -
social-media-algorithms-in-2025]. Halcon, 2024. Datum citovani:
15. Ledna 2025.

3. NGUYEN, Tien T.; HUI, Pik-Mai; HARPER, F. Maxwell; TERVEEN,
Loren; KONSTAN, Joseph A. FEzploring the Filter Bubble: The Ef-
fect of Using Recommender Systems on Content Diversity [https://
archives . iw3c2 . org/www2014 /proceedings/proceedings/p677 .
pdf]. ACM Press, 2014. Datum citovani: 15. Ledna 2025.

4. TADDEO, Mariarosaria. Information Warfare: A Philosophical Per-
spective [https://www.researchgate.net/publication/234627039_
Information_Warfare _A_Philosophical _Perspective|. University
of Oxford, 2021. Datum citovani: 15. Ledna 2025.

5. MARTIN, Maddie. How Much Money Do You Get Per View on You-
Tube? (2025 Stats) [https://www.thinkific.com/blog/youtube-
money-per-view|. Thinkific, 2024. Datum citovani: 15. Ledna 2025.

6. ALLIANCE, FIDO. What is FIDO2? |https://fidoalliance.org/
fido2/]. FIDO Alliance, [b.r.]. Datum citovani: 15. Ledna 2025.

73

https://datareportal.com/social-media-users
https://datareportal.com/social-media-users
https://www.halconmarketing.com/post/cracking-social-media-algorithms-in-2025
https://www.halconmarketing.com/post/cracking-social-media-algorithms-in-2025
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://archives.iw3c2.org/www2014/proceedings/proceedings/p677.pdf
https://www.researchgate.net/publication/234627039_Information_Warfare_A_Philosophical_Perspective
https://www.researchgate.net/publication/234627039_Information_Warfare_A_Philosophical_Perspective
https://www.thinkific.com/blog/youtube-money-per-view
https://www.thinkific.com/blog/youtube-money-per-view
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/

10.

11.

JAIN, Ayushi. Decoding Instagram System Design € Architecture (And
How Reels Recommendation Works?) [https://www.techaheadcorp.
com/blog/decoding - instagram- system-design-architecture-
and-how-reels-recommendation-works/]. Tech Ahead, 2024. Datum
citovani: 15. Ledna 2025.

BRYANT, Daniel. The Infrastructure Behind Twitter: Scaling Networ-
king, Storage and Provisioning [https://www.techaheadcorp.com/

blog/decoding-tiktok - system-design-architecture/|. Info Q,
2017. Datum citovani: 15. Ledna 2025.

SINHA, Deepak. How TikTok Works: Decoding System Design € Archi-
tecture with Recommendation System |[https://www.techaheadcorp.
com/blog/decoding-tiktok-system-design-architecture/|. Tech
Ahead, 2024. Datum citovani: 15. Ledna 2025.

MDN. Web Authentication API |[https://developer.mozilla.org/
en-US/docs/Web/API/Web_Authentication_API]. MDN Web Docs,
2025. Datum citovani: 15. Ledna 2025.

ALI, Peshawa Jammal Muhammad. Two-Factor Authentication 2FA:
An Overview of HOTP and TOTP [https://www.researchgate.net/
profile /Peshawa - Muhammad - Ali/publication /375867152 _Two -
Factor _Authentication_2FA_An_OQOverview_of _HOTP_and_TOTP/
links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-
2FA-An-0verview-of ~-HOTP-and-TOTP. pdf]. Koya University, 2023.
Datum citovani: 15. Ledna 2025.

74

https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-instagram-system-design-architecture-and-how-reels-recommendation-works/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://www.techaheadcorp.com/blog/decoding-tiktok-system-design-architecture/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf
https://www.researchgate.net/profile/Peshawa-Muhammad-Ali/publication/375867152_Two-Factor_Authentication_2FA_An_Overview_of_HOTP_and_TOTP/links/65604e2fce88b8703107f7ac/Two-Factor-Authentication-2FA-An-Overview-of-HOTP-and-TOTP.pdf

Zadani maturitniho projektu z informatickych predmétu

Jméno a piijmeni: Patrik Stohanzl

Pro skolni rok: 2024/2025

Trida: 4. A

Obor: Informacni technologie 18-20-M /01
Téma prace: Ndvrh a realizace moderni socidlni sité
Vedouci prace: RNDr. Jan Koupil, Ph.D.

ZpUsob zpracovani, cile prace, pokyny k obsahu a rozsahu prace:

Cilem tohoto projektu je navrhnout a vyvinout moderni a inovativni platformu pro socialni
interakci, ktera se bude odliSovat od stavajicich feSeni integraci plugini a otevienim moznosti
pro komunitu. Platforma bude robustni, §kalovatelna a zaméfena na potieby modernich
uzivatell, poskytujici jedine¢ny a obohacujici zazitek.

Specifikace projektu:

1. Analyza a navrh:
o Bude provedena analyza existujicich socidlnich siti a jejich funkci.
o Budou definovany pozadavky na systém a vytvoren navrh uzivatelského
rozhrani.
o Bude navrzena databazova struktura pro ukladani uzivatelskych dat,
prispévki a plugind.
2. Zakladni funkce:
o Prihlaseni/Registrace:
= Bude implementovana bezpecna a pohodlna metoda pro registraci
a prihlaseni uzivatelt.
* Bude zajisténa autentizace pomoci Passkeys pro bezpecné a
bezklikové prihlaSeni.
* Bude umoznéno piihlaSeni pomoci QR kédu pro snadné prihlaseni
na jinych zarizenich.
o Nahravani obsahu:
= Uzivatelim bude umozZnéno nahravat fotografie a texty a sdilet je s
ostatnimi uZivateli.
o ProhliZeni sdileného obsahu:
* Bude zajisténa moZnost zobrazovat prispévky a obsah ostatnich
uzivateld.
o Pridavani pratel:
= Uzivatelim bude umoznéno pridavat své pratele a blizké jako
kamarady.
3. Integrace komunitnich plugini (nepovinny bod):
o Bude implementovano sandboxové prostiedi pro bezpec¢nou exekuci kédu
pluginti na klientské strané.

o Budou poskytnuty nastroje pro vyvoj a integraci pluginti komunitou.
4. Vyzkum a navrh technologického stacku:
o Bude proveden vyzkum dostupnych technologii a nastroj vhodnych pro
vyvoj tohoto typu aplikace.
o Na zakladé vyzkumu bude navrZen technologicky stack.
o Priimplementaci bude technologicky stack ovéren a optimalizovan.
5. Notifikace a zasilani zprav:
o Bude implementovan systém notifikaci pro informovani uzivateli o
novych prispévcich, aktivitach a pluginovych aktualizacich.
6. Testovani a dokumentace:
o Bude provedeno dikladné testovani aplikace, vCetné funkcnich testt, testd
uzivatelského rozhrani a vykonu.
o Bude vytvorena uzivatelska a vyvojarska dokumentace.
7. Prezentace a obhajoba:
o Bude pripravena prezentace projektu, ktera bude obsahovat demonstrac¢ni
video ukazujici hlavni funkce aplikace.
o Bude pripravena obhajoba projektu, v¢etné technickych detailti a
ziskanych zkuSenosti.

PoZadované vystupy:

e Funk¢ni webova aplikace pro komunikaci a sdileni obsahu

e Bezpecné metody prihlaseni a registrace uzivateld.

e Systém pro nahravani, spravu a prohliZeni obsahu.

e MozZnost piidavani pratel a spravy uzivatelskych spojeni.

e (Volitelné) Sandboxové prostiedi pro vyvoj a integraci plugini.
e Systém notifikaci a zasilani zprav.

o UZivatelska a vyvojarska dokumentace.

e Prezentace a demonstracni video.

Hodnoceni:

Projekt bude hodnocen na zakladé nasledujicich kritérii:

o Kvalita a funk¢nost uzivatelského rozhrani.

e Schopnost aplikace plnit vSechny stanovené cile.
e Inovativnost a originalita reSeni.

o Flexibilita a prizpisobitelnost systému.

« Uroven dokumentace a prezentace projektu.

o Kreativita a efektivnost reSeni.

Strucny ¢asovy harmonogram (s daty a konkretizovanymi ukoly):

e Zari: Analyza problému, tvorba UML usecase diagramii, navrh vzhledu aplikace

« Rijen-listopad: Vyvoj backendové ¢asti (registrace, autentizace, sprava soubort,
komunikac¢ni procesy a API, problémy nasazeni)

e Prosinec: Vyvoj frontendové ¢asti, priprava pro pluginy

e Leden: Finalizace projektu

« Unor - birezen: Prace na dokumentaci a oprava chyb

	Úvod
	Analýza potřeby nové sociální platformy
	Současný stav sociálních platforem
	Problematika obchodně orientovaného přístupu
	Technologické nedostatky současných řešení
	Souhrn provedené analýzy

	Cíle práce
	Specifikace cílů

	Struktura práce

	Analýza a předpoklady
	Analýza trhu a existujících řešení
	Technické implementace dominantních platforem

	Technologické předpoklady a rámec projektu
	Použité technologie
	High Availability (HA)

	Funkční a nefunkční požadavky
	Funkční požadavky
	Nefunkční požadavky

	Návrh architektury systému
	Celkový přehled architektury
	Přehled klientské strany
	Přehled serverové části

	Mikroservisní architektura na platformě Kubernetes
	Komunikační vrstvy
	Bezpečnost nasazeného ekosystému
	Limitace prostředí
	Databázové řešení

	Detail implementace klíčových komponent
	Autentizace a bezpečnost
	Implementace Passkeys
	QR Code Sign-in
	Vícefaktorová autentizace
	Zařízením orientovaná autentizace
	Bezpečnostní mechanizmy na úrovni API

	Mikroservisní ekosystém
	Databázový ORM mapper
	Autentizační middleware
	Middleware pro validaci interních požadavků
	Middleware pro extrakci uživatelských dat
	Autentizační mikroservisa
	Uživatelská mikroservisa
	Obsahová mikroservisa
	Pluginová mikroservisa

	Mobilní aplikace
	Webová aplikace

	Ekosystém uživatelských pluginů
	Aplikační vrstva
	Verzování API
	Registrace a pouštění eventů
	Dynamické uživatelské rozhraní

	Pluginová vrstva
	Sandoxing u nativních zařízení

	UI
	Definice komponentů a jejich registrace
	Renderování komponentů

	Monitoring a benchmarking
	Monitorování a logování
	Benchmarking

	Diskuze a vyhodnocení výsledků
	Hodnocení dosažených výsledků
	Porovnání s existujícími řešeními
	Omezení implementace a návrhy na budoucí rozvoj

	Závěr
	Shrnutí klíčových poznatků
	Doporučení pro budoucí výzkum a praxi

	Přílohy
	Slovník pojmů
	Literatura

